temperature or produce acids as byproducts. As such, a
range of new synthetic routes,9 including stepwise sub-
stitution reactions on simple imidazoles,14 and catalytic
cyclizations from acyclic precursors,15 have been devel-
oped, many of which can provide easy access to these
products. However, there are still some limitations asso-
ciated with these methods, such as use of corresponding
imidazoles as a starting material; inaccessible synthetic
precursors; and hazardous, toxic, special, and often ex-
pensive reagent or transition-metal catalysts. Thus, the
discovery of new, direct, and general synthetic routes to
such heterocycles remains a formidable challenge.
Scheme 1. A Domino Process Leading to 1,2,4,5-Tetrasubsti-
tuted Imidazoles 3
As remarkably versatile intermediates in modern or-
ganic synthesis, azides participate in a wide range of reac-
tions that construct new carbonꢀnitrogen or nitrogenꢀ
heteroatom bonds.16 Recently, much attention has been
focused toward applying 2-azido acrylates as a pivotal
three-atom synthon for the formation of diverse nitrogen-
containing heterocycles including indoles, pyridines,
pyrroles, isoquinolines, 1,2,4-triazolines, pyrrolo[1,2-R]-
pyrazines, and pyrazoles, which have been synthesized
with the assistance of meal salt,17 triphenylphosphine,18
or base.19 Inspired by these results and with the interest of
developing a new type of [3 þ 3] cycloaddition of nitrones,20
we investigated the reaction of 2-azido acrylates 1 and
nitrones 2. Quite surprisingly, instead of the anticipated
[3 þ 3] cycloaddition products and/or the possible [3 þ 2]
cycloaddition21 side products, we observed an unexpected
domino process leading to 1,2,4,5-tetrasubstituted imida-
zoles 3under catalyst-free conditions (Scheme 1). To the best
of our knowledge, only a few one-step, noncatalytic reac-
tions which produce highly substituted imidazoles have been
reported.9,22 Herein, we wish to report our recent results.
Initially, we examined the reaction of 2-azido acrylate 1a
(1.0 equiv) with nitrone 2a (1.5 equiv) in 1,2-dichloroethane
(DCE) at 50 °C for 24 h and obtained the imidazole 3aa in
23% yield together with the recoveryof 51% of 1a (Table 1,
entry 1). Further screening of the solvents, reaction tem-
perature, and time (entries 2ꢀ16) established the optimal
reaction conditions: 3.0 equiv of 2a and use of anhydrous
MgSO4 (4.0 equiv) as an additive in DCE at 66 °C for 48 h
with 96% yield of 3aa (entry 11). The structure of 3aa was
established by spectroscopic analysis and further confirmed
by single-crystal X-ray analysis (Figure 1).23
(14) For examples, see: (a) Giles, R. L.; Sullivan, J. D.; Steiner, A. M.;
Looper, R. E. Angew. Chem., Int. Ed. 2009, 48, 3116. (b) Mata, L.;
ꢀ
ꢀ
Jimenez-Oses, G.; Avenoza, A.; Busto, J. H.; Peregrina, J. M. J. Org.
Chem. 2011, 76, 4034. (c) Tan, K. L.; Bergman, R. G.; Ellman, J. A.
J. Am. Chem. Soc. 2001, 123, 2685. (d) Fukumoto, Y.; Sawada, K.;
Hagihara, M.; Chatani, N.; Murai, S. Angew. Chem., Int. Ed. 2002, 41,
2779. (e) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 10580.
(f) Langhammer, I.; Erker, T. Heterocycles 2005, 65, 2721. (g) Altman,
R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779. (h) Lv, X.; Wang, Z.;
Bao, W. Tetrahedron 2006, 62, 4756. (i) Cristau, H.-J.; Cellier, P. P.;
Spindler, J.-F.; Taillefer, M. Chem.;Eur. J. 2004, 10, 5607. (j) Lan,
J.-B.; Chen, L.; Yu, X.-Q.; You, J.-S.; Xie, R.-G. Chem. Commun. 2004,
188. (k) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry;
Pergamon: Oxford, 2000.
(15) For examples, see: (a) Shen, H.; Xie, Z. J. Am. Chem. Soc. 2010,
132, 11473. (b) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan,
V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (c) Siamaki, A. R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2006, 128, 6050. (d) Kanazawa, C.;
Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2006, 128, 10662.
(e) Zaman, S.; Kitamura, M.; Abell, A. D. Org. Lett. 2005, 7, 609.
(f) Sharma, G. V. M.; Jyothi, Y.; Lakshmi, P. S. Synth. Commun. 2006,
36, 2991. (g) Abbiati, G.; Arcadi, A.; Canevari, V.; Rossi, E. Tetrahedron
Lett. 2007, 48, 8491. (h) Grigg, R.; Lansdell, M. I.; Thornton-Pett, M.
Tetrahedron 1999, 55, 2025. (i) Frantz, D. E.; Morency, L.; Soheili, A.;
Murry, J. A.; Grabowski, E. J. J.; Tillyer, R. D. Org. Lett. 2004, 6, 843.
(j) Petit, S.; Fruit, C.; Bischoff., L. Org. Lett. 2010, 12, 4928. (k) Kison,
C.; Opatz, T. Chem.;Eur. J. 2009, 15, 843. (l) Sparks, R. B.; Combs,
A. P. Org. Lett. 2004, 6, 2473.
Since 2-azido acrylates24 and nitrones25 are readily
available, the domino approach to imidazoles is highly
appealing. We, therefore, extended the substrate scope
to various 2-azido acrylates 1 and nitrones 2 using the
optimized conditions. As presented in Table 2, various
substituted 2-azido acrylates 1 with nitrone 2a worked well
€
(16) For recent reviews on the reactivity of azides, see: (a) Brase, S.;
Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44,
5188. (b) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
(20) (a) Hu, B.; Zhu, J.; Xing, S.; Fang, J.; Du, D.; Wang, Z. Chem.;
Eur. J. 2009, 15, 324. (b) Cardona, F.; Goti, A. Angew. Chem., Int. Ed.
2005, 44, 7832. (c) Gothelf, K. V.; Jøgensen, K. A. Chem. Commun. 2000,
1449.
(21) For selected reviews on [3 þ 2] cycloaddition reactions of
nitrones with alkenes, see: (a) Frederickson, M. Tetrahedron 1997, 53,
403. (b) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
(c) Frederickson, M. Tetrahedron 1997, 53, 403.
(22) (a) Marwaha, A.; Singh, P.; Mahajan, M. P.; Velumurugan, D.
Tetrahedron Lett. 2004, 45, 8945. (b) Salvatori, M. d. R. S.; Abou-Jneid,
R.; Ghoulami, S.; Martin, M.-T.; Zaparucha, A.; Al-Mourabit, A.
J. Org. Chem. 2005, 70, 8208.
(23) CCDC 835710 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
(24) For synthesis of 2-azido acrylates, see: (a) Henn, L.; Hickey,
D. M. B.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1984,
2189. (b) Moore, A. T.; Rydon, H. N. Org. Synth. 1973, 5, 586. (c) Nair,
V.; George, T. G. Tetrahedron Lett. 2000, 41, 3199.
(17) For recent examples of meal salt catalyzed/mediated reactions of
2-azido acrylates, see: (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pum-
phrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500. (b) Dong,
H.; Shen, M.; Redford, J. E.; Stokes, B. J.; Pumphrey, A. L.; Driver,
T. G. Org. Lett. 2007, 9, 5191. (c) Chiba, S.; Wang, Y.-F.; Lapointe, G.;
Narasaka, K. Org. Lett. 2008, 10, 313. (d) Bonnamour, J.; Bolm, C. Org.
Lett. 2011, 13, 2012. (e) Ng, E. P. J.; Wang, Y.-F.; Hui, B. W.-Q.;
Lapointe, G.; Chiba, S. Tetrahedron 2011, 67, 7728. (f) Wang, Y.-F.;
Toh, K. K.; Chiba, S.; Narasaka, K. Org. Lett. 2008, 10, 5019.
(18) For recent examples of PPh3-triggered reactions of 2-azido
acrylates, see: (a) Yang, Y. Y.; Shou, W. G.; Chen, Z. B.; Hong, D.
J. Org. Chem. 2008, 73, 3928. (b) Chen, Z.-B.; Hong, D.; Wang, Y.-G.
J. Org. Chem. 2009, 74, 903. (c) Hong, D.; Zhu, Y. X.; Lin, X. F.; Wang,
Y. G. Tetrahedron 2011, 67, 650. (d) Hong, D.; Chen, Z. B.; Lin, X. F.;
Wang, Y. G. Org. Lett. 2010, 12, 4608.
(19) For recent examples of reactions of 2-azido acrylates in the
presence of a base, see: (a) Li, Y.; Hong, D.; Lu, P.; Wang, Y. G.
Tetrahedron Lett. 2011, 52, 4161. (b) Chen, W. T.; Hu, M.; Wu, J. W.;
Zou, H. B.; Yu, Y. P. Org. Lett. 2010, 12, 3863.
Org. Lett., Vol. 13, No. 24, 2011
6363