Table 1 Calculated energies for possible isomers of complexes A and
B (in kcal molꢀ1) relative to the most stable isomer of A in the gas phase
In summary, we have presented the first examples of
triphenylphosphine derivatives of dicyclopalladated azobenzenes
obtained by solid-state synthesis. This synthetic route produced
bridged complexes and for the first time demonstrated that very
complex molecular dynamics involving a series of structural
transformations is also feasible in the solid state, Scheme 1.
The described results are important for understanding the
structural transformations occurring during the mechanical
processing of solid reactants and will have significant implication
for the future design and synthesis of the new generation of
coordination compounds.
A
B
cis
trans
cis
trans
Complexa
Alpha
Beta
Alpha
Beta
1a
2a
3a
4a
0.0b
0.0
0.0
0.0
7.6b
7.6
7.5
8.1
1b
2b
3b
4b
2.5
2.0
1.7
2.3
12.7
12.5
11.5
13.1
0.1
1.0
2.2
8.3
8.6
8.4
a
b
Only the complexes of type A were isolated. Alpha and beta
isomers are identical.
The authors thank the Ministry of Science, Educations and
Sports of the Republic of Croatia for financial support (grant nos.
098-0982915-2950, 098-1191344-2943 and 119-1193079-3069).
crystal structure determinations, Fig. 1 and Fig. S2 (ESIw).
In all cases, except for 4a, these pairs of PXRD patterns show
a very good agreement. Thus, the solid-state reactions of
1–3 with PPh3 resulted in A complexes. The formation of 4a
from precursor 4 was indicated by solid-state 31P NMR
spectrum of the ground product that contains two signals
(31.34 and 39.89 ppm) since two atoms of phosphorus in all
bridged complexes 1a–4a are not equivalent, Fig. 4b and Table
S1 (ESIw). In contrast to A complexes, two phosphorus atoms
in B complex with azobenzene 1b are equivalent (Scheme 1),
while in complexes with unsymmetrical substituted azobenzenes
2b–4b differences between them are too small to be visible in
NMR spectra. Consequently, only one phosphorus signal should
be present in spectra of B complex which was not the case here.
31P NMR spectra recorded in CDCl3 revealed that only the
structure of 2a in solution is not consistent with the observed
solid-state structure. In contrast to 1a, 3a and 4a whose
31P NMR spectra contain one set of two phosphorus signals
(Fig. 4a), the spectrum of 2a contains double set of signals due
to the simultaneous presence of alpha and beta isomers in the
solution, Fig. 4c and Table S1 (ESIw). Thus, dissolving 2a,
isolated as a beta isomer, in CDCl3 results in equilibrium
between alpha and beta isomers which is confirmed by
Notes and references
1 (a) M. Schlesinger, S. Shulze, M. Hietschold and M. Mehring,
Microporous Mesoporous Mater., 2010, 132, 121; (b) D. Cincic
´
,
T. Friscic and W. Jones, J. Am. Chem. Soc., 2008, 130, 7524;
´
(c) D. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini,
M. Curzi and M. Polito, Dalton Trans., 2006, 1249; (d) G. Kaupp,
CrystEngComm, 2006, 8, 794; (e) K. Tanaka and F. Toda, Chem.
Rev., 2000, 100, 1025.
2 (a) P. J. Beldon, L. Fa
A. K. Cheetham and T. Friscic
49, 9640; (b) A. Pichon and S. L. James, CrystEngComm, 2008,
10, 1839; (c) D. Braga and F. Grepioni, Angew. Chem., Int. Ed.,
2004, 43, 4002.
´
bia
´
n, R. S. Stein, A. Thirumurugan,
´
, Angew. Chem., Int. Ed., 2010,
3 (a) T. Friscic, in Metal–Organic Frameworks: Design and Application,
´
ed. L. R. MacGillivray, John Wiley & Sons, Inc., Hoboken, NJ,
USA, 2010; (b) A. L. Garay, A. Pichon and S. L. James, Chem. Soc.
Rev., 2007, 36, 846; (c) D. Braga, L. Maini, M. Polito, L. Mirolo and
F. Grepioni, Chem.–Eur. J., 2003, 9, 4362.
4 (a) A. Stolle, T. Szuppa, S. E. S. Leonhardt and B. Ondruschka,
´
Chem. Soc. Rev., 2011, 40, 2317; (b) D. Cincic and B. Kaitner,
CrystEngComm, 2011, 13, 4351; (c) G. A. Bowmaker, Effendy,
J. V. Hanna, P. C. Healy, S. P. King, C. Pettinari, B. W. Skelton
and A. H. White, Dalton Trans., 2011, 40, 7210; (d) R. Kuroda,
J. Yoshida, A. Nakamura and S. Nishikiori, CrystEngComm, 2009,
11, 427; (e) J. Yoshida, S. Nishikiori and R. Kuroda, Chem.–Eur. J.,
2008, 14, 10570; (f) C. J. Adams, H. M. Colquhoun, P. C. Crawford,
M. Lusi and A. G. Orpen, Angew. Chem., Int. Ed., 2007, 46,
1124; (g) D. Braga, L. Maini, S. L. Giaffreda, F. Grepioni,
M. R. Chierotti and R. Gobetto, Chem.–Eur. J., 2004, 10, 3261;
(h) A. Orita, L. S. Jiang, T. Nakano, N. C. Ma and J. Otera, Chem.
Commun., 2002, 1362; (i) V. P. Balema, J. W. Wiench, M. Pruski and
V. K. Pecharsky, Chem. Commun., 2002, 1606; (j) J. F. Fernandez-
Bertran, Pure Appl. Chem., 1999, 71, 581.
1
variable-temperature H NMR experiments, Fig. S6 (ESIw).
Quantum-chemical calculations have suggested that the pro-
ducts of the solid-state reactions are thermodynamically favor-
able since the isolated isomers 1a–4a are the most stable isomers
in the gas phase, Table 1. The free energy difference between
alpha and beta isomers of 2a is only 0.1 kcal molꢀ1. Thus, the
calculations support the formation of both isomers for 2a.
´
5 (a) D. Babic
Chem., 2008, 47, 10446; (b) M. Curic
K. Molcanov, Inorg. Chem., 2005, 44, 5975.
´
, M. Curic, K. Molcanov, G. Ilc and J. Plavec, Inorg.
´
´
´
, D. Babic, A. Visnjevac and
´
´
6 (a) M. Juribasic
and D. Babic, Dalton Trans., 2010, 39, 8769; (b) S.-H. Li, C.-W. Yu
´
, M. Curic, K. Molcanov, D. Matkovic-Calogovic
´
´
´
´
and J.-G. Xu, Chem. Commun., 2005, 450; (c) J. Dupont,
C. S. Consorti and J. Spencer, Chem. Rev., 2005, 105, 2527.
7 (a) W. Yuan, T. Friscic
´
, D. Apperley and S. L. James, Angew.
, A. V. Trask,
Chem., Int. Ed., 2010, 49, 3916; (b) T. Friscic
´
W. Jones and W. D. S. Motherwell, Angew. Chem., Int. Ed.,
2006, 45, 7546.
8 N. Shan, F. Toda and W. Jones, Chem. Commun., 2002, 2372.
9 (a) T. Friscic and W. Jones, Cryst. Growth Des., 2009, 9, 1621;
´ ´
(b) I. A. Tumanov, A. F. Achkasov, E. V. Boldyreva and
V. V. Boldyrev, CrystEngComm, 2011, 13, 2213.
10 G. A. Bowmaker, J. V. Hanna, B. W. Skelton and A. H. White,
Chem. Commun., 2009, 2168.
11 J. Vicente, A. Areas, D. Bautista and P. G. Jones, Organometallics,
1997, 16, 2127.
Fig. 4 31P NMR spectra of 1a recorded in CDCl3 (a), 1a recorded in
solid-state (b) and 2a recorded in CDCl3 (c). The side bands are
denoted by asterisks (*).
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11543–11545 11545