B.Özgün Öztürk et al. / Inorganica Chimica Acta 378 (2011) 257–263
263
[4] (a) A. Goswami, T. Ito, S. Okamoto, Adv. Synth. Catal. 349 (2007) 2368;
with a terminal alkyne in highly polar solvents at relatively high
temperatures to form an active bis-alkylidene complex. Thus mak-
ing two mechanisms, metathesis cascade and metallacycle route
are difficult to distinguish from each other at 50 °C.
The comparable high activity of [Ru-III] with our homobimetal-
lic ruthenium systems [Ru-I], [Ru-II] and [Ru-IV] towards the
cyclotrimerisation reaction of 1a indicated that this reaction pro-
ceeded through both a metathetic cascade, considering the rela-
(b) G. Hilt, W. Hess, T. Vogler, C. Hengst, J. Organomet. Chem. 690 (2005) 5170;
(c) M. Lautens, W. Klute, W. Tam, Chem. Rev. 96 (1996) 49;
(d) K. Peter, C. Vollhardt, Angew. Chem., Int. Ed. 23 (1984) 539;
(e) L.V.R. Bonaga, H.C. Zhang, A.F. Moretto, H. Ye, D.A. Gauthier, J. Li, G.C. Leo,
B.E. Maryanoff, J. Am. Chem. Soc. 127 (2005) 3473.
[5] (a) K. Tanaka, K. Shirasaka, Org. Lett. 5 (2003) 4697;
(b) K. Tanaka, K. Toyoda, A. Wada, K. Shirasaka, M. Hirano, Chem. Eur. J. 11
(2005) 1145;
(c) R. Grigg, R. Scott, P. Stevenson, Tetrahedron Lett. 23 (1982) 2691.
[6] C. Breschi, L. Piparo, P. Pertici, A.M. Caporusso, G. Vitulli, J. Organomet. Chem.
607 (2000) 57.
tively similar activity of [Ru-III], [Ru-I] and [Ru-II] and
a
metallacycle route [Ru-IV]. Combining these manifolds observa-
tions, we can conclude that it is possible for two ruthenium centres
(ruthenium alkylidene and the ruthenium arene [Ru-I] and [Ru-II])
to be active towards cyclotrimerisation reactions.
[7] N. Saino, D. Kogure, S. Okamoto, Org. Lett. 7 (2005) 3065.
[8] (a) S. Saito, T. Kawasaki, N. Tsuboya, Y. Yamamoto, J. Org. Chem. 66 (2001) 796;
(b) Y. Sato, T. Nishimata, M. Mori, J. Org. Chem. 59 (1994) 6133.
[9] (a) P.M. Maitles, Acc. Chem. Res. 9 (1976) 93;
(b) B.M. Trost, G.J. Tanoury, J. Am. Chem. Soc. 109 (1987) 4753.
[10] J.R. Strickler, M.A. Bruck, D.E. Wigley, J. Am. Chem. Soc. 112 (1990) 2814.
[11] (a) J.A. Teske, A. Deiters, J. Org. Chem. 73 (2008) 342;
(b) S.J. Neeson, P.J. Stevenson, Tetrahedron 45 (1989) 6239;
(c) E.A. Anderson, E.J. Alexanian, E.J. Sorensen, Angew. Chem., Int. Ed. 43 (2004)
1998;
4. Conclusion
In conclusion, we have shown that homobimetallic ruthenium
alkylidene complexes [Ru-I] and [Ru-II] are efficient catalysts for
the transformation of alkynes to substituted arenes by chemo-
and regio-selective intermolecular-[2+2+2] cyclotrimerisation
reactions. These ruthenium complexes promote the catalytic cyclo-
trimerisation of less sterically hindered alkynes in a selective man-
ner with 1,2,4-trisubstituted arenes. Conversely, the processes
favours the formation of 1,3,5-trisubstituted arenes with sterically
hindered alkynes. The catalytic systems were also capable of form-
ing substituted arenes through the cross-intermolecular cyclotri-
merisation of two monoynes. Considering the nature of the
homobimetallic alkylidene complexes, it is possible that these
transformations can follow both cascade metathetic and metalla-
cycle routes depending upon the reaction conditions.
(d) C.A. Chang, C.G. Francisco, T.R. Gadek, J.J.A. King, E.D. Sternberg, K.P.C.
Vollhardt, in: B.M. Trost, C.R. Hutchinson (Eds.), Organic Synthesis Today and
Tomorrow, Pergamon Press, Oxford, 1981. p. 71;
(e) K.P.C. Vollhardt, Pure Appl. Chem. 57 (1985) 1819;
(f) K.P.C. Vollhardt, Pure Appl. Chem. 65 (1993) 153;
(g) C. Eickmeier, D. Holmes, H. Junga, A.J. Matzger, F. Scherhag, M. Shim, K.P.C.
Vollhardt, Angew. Chem., Int. Ed. 38 (1999) 800;
(h) C. Aubert, O. Buisine, M. Petit, F. Slowinski, M. Malacria, Pure Appl. Chem.
71 (1999) 1463;
(i) F. Slowinski, C. Aubert, M. Malacria, J. Org. Chem. 68 (2003) 378.
[12] D. Suzuki, H. Urabe, F. Sato, J. Am. Chem. Soc. 123 (2001) 7925.
[13] T. Takahashi, Z. Xi, A. Yamazaki, Y. Liu, K. Nakajima, M. Kotora, J. Mol. Catal. A:
Chem. 239 (2005) 166.
[14] Y. Sato, K. Ohashi, M. Mori, Tetrahedron Lett. 40 (1999) 5231.
[15] B. Witulski, T. Stengel, J.M. Fernández-Hernández, Chem. Commun. (2000)
1965.
[16] N. Mori, S. Ikeda, K. Odashima, Chem. Commun. (2001) 181.
[17] (a) Y. Yamamoto, T. Arakawa, R. Ogawa, K. Itoh, J. Am. Chem. Soc. 125 (2003)
12143;
(b) Y. Yamamoto, K. Hata, T. Arakawa, K. Itoh, Chem. Commun. (2003) 1290–
1291;
Acknowledgments
Y. Yamamoto, J. Ishii, H. Nishiyama, K. Itoh, J. Am. Chem. Soc. 126 (2004)
3712.
[18] (a) Y. Yamamoto, R. Ogawa, K. Itoh, J. Am. Chem. Soc. 123 (2001) 6189;
(b) Y. Yamamoto, H. Takagishi, K. Itoh, Org. Lett. 3 (2001) 2117;
(c) Y. Yamamoto, K. Kinpara, T. Saigoku, H. Takagishi, S. Okuda, H. Nishiyama,
K. Itoh, J. Am. Chem. Soc. 127 (2005) 605.
We thank the Scientific and Technological Research Council of
Turkey (TUBITAK, 107T084) and Hacettepe University (080160
1008) for research support.
References
[19] Y. Ura, Y. Sato, H. Tsujita, T. Kondo, M. Imachi, T. Mitsudo, J. Mol. Catal. A:
Chem. 239 (2005) 166.
[20] C.Y. Wu, Y.C. Lin, P.T. Chou, Y. Wang, Y.H. Liu, Dalton Trans. 40 (2011) 3748.
[21] (a) V. Cadierno, S.E. García-Garrido, J. Gimeno, J. Am. Chem. Soc. 128 (2006)
15094;
[1] F.A. Carey, R.J. Sundberg, Advanced Organic Chemistry, third ed., Plenum Press,
New York, 1990 (Part B, Chapter 11, 571).
[2] (a) B.M. Trost, Science 254 (1991) 1471;
(b) V. Cadierno, J. Francos, S.E. García-Garrido, Green Chem. Lett. Rev. 4 (2011)
55.
(b) B.M. Trost, Angew. Chem., Int. Ed. Engl. 34 (1995) 259;
(c) B.M. Trost, Acc. Chem. Res. 35 (2002) 695;
[22] J. Peters, S. Blechert, Chem. Commun. (1997) 1983.
[23] S.K. Das, R. Roy, Tetrahedron Lett. 40 (1999) 4015.
[24] D.D. Young, R.S. Senaiar, A. Deiters, Chem. Eur. J. 12 (2006) 5563.
[25] G.B. Hoven, J. Efskind, C. Romming, K. Undheim, J. Org. Chem. 67 (2002)
2459.
[26] Á. Mallagaray, S. Medina, G. Domínguez, J. Pérez-Castells, Synlett 14 (2010)
2114.
[27] A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C.W. Lehmann, R. Mynott, F.
Stelzer, O.R. Thiel, Chem. Eur. J. 7 (2001) 3236.
(d) N. Saino, F. Amemiya, E. Tanabe, K. Kase, S. Okamoto, Org. Lett. 8 (2006)
1439;
(e) T. Shibata, K. Tsuchikama, Org. Biomol. Chem. 6 (2008) 1317.
[3] (a) B.R. Galan, T. Rovis, Angew. Chem., Int. Ed. 48 (2009) 2830;
(b) B. Heller, M. Hapke, Chem. Soc. Rev. 36 (2007) 1085;
(c) P.R. Chopade, J. Louie, Adv. Synth. Catal. 348 (2006) 2307;
(d) S. Kotha, E. Brahmachary, K. Lahiri, Eur. J. Org. Chem. 2005 (2005) 4741;
(e) J.A. Varela, C. Saa, Chem. Rev. 103 (2003) 3787;
(f) S. Saito, Y. Yamamoto, Chem. Rev. 100 (2000) 2901;
(g) N.E. Schore, Chem. Rev. 88 (1988) 1081;
(h) G. Domínguez, J. Pérez-Castells, Chem. Soc. Rev. 40 (2011) 3430.
[28] E.L. Dias, R.H. Grubbs, Organometallics 17 (1998) 2758.
[29] V. Cadierno, M.P. Gamasa, J. Gimeno, Coord. Chem. Rev. 248 (2004) 1627.