Paper
According to the results, HANCD-catalyzed synthesis of
RSC Advances
4 J. Zdarta, A. S. Meyer, T. Jesionowski and M. Pinelo,
THPPs in water provides access to a green high yield synthesis
of THPPs from the ammonia produced in situ by urea hydro-
lysis. The performance of HANCD@urease with respect to the
reaction yield and time is better than those of previously re-
ported syntheses of THPPs using ammonium acetate.
Catalysts, 2018, 8, 92.
5 E. P. Cipolatti, A. Valerio, R. O. Henriques, D. E. Moritz,
J. L. Ninow, D. M. G. Freire, E. A. Manoel, R. Fernandez-
Lafuente and D. de Oliveira, RSC Adv., 2016, 6, 104675–
104692.
´
The possible reaction mechanism for HANCD@urease-
catalyzed synthesis of THPPs is proposed in Scheme 2. It was
presumed that the reaction proceeds by activation of ethyl
acetoacetate with HANCD@urease, bio-production of ammonia
from urea in the presence of HANCD@urease, and the cooper-
ative role of immobilized urease in closing the reaction
components by hydrogen bonding and cyclization of interme-
diates to nal products (Scheme 2).
6 F. Tamaddon, D. Arab and E. Ahmadi-AhmadAbadi,
Carbohydr. Polym., 2020, 229, 115471.
7 Z. Y. Zhao, J. Liu, M. Hahn, S. Qiao, A. P. J. Middelberg and
L. He, RSC Adv., 2013, 3, 22008–22013.
8 J. C. Polacco, P. Mazzafera and T. Tezotto, Plant Sci., 2013,
199, 79–90.
9 M. Lv, X. Ma, D. P. Anderson and P. R. Chang, Cellulose,
2018, 25, 233–243.
10 B. L. Krishna, A. N. Singh, S. Patra and V. K. Dubey, Process
Biochem., 2011, 46, 1486–1491.
Conclusions
´
11 A. Y. Vargas, H. A. Rojas, G. P. Romanelli and J. J. Martınez,
In this work, various NCDs were prepared by the prewashing of
Green Process. Synth., 2017, 6, 377–384.
cotton to microcellulose, acid hydrolysis of MC to NC, and 12 P. Zucca and E. Sanjust, Molecules, 2014, 19, 14139–14194.
periodate oxidation of the given NC under optimized condi- 13 F. Tamaddon and S. Ghazi, Catal. Commun., 2015, 72, 63–67.
tions. Aer determination of the aldehyde content, the HANCD 14 F. Tamaddon, S. Ghazi and M. R. Noorbala, J. Mol. Catal. B:
with the highest CHO groups was successfully reacted with
urease amino acids to covalently immobilize them as HANC- 15 M. Hartmann and X. Kostrov, Chem. Soc. Rev., 2013, 42,
D@urease. The characterized immobilized urease was 6277–6289.
compared with the free enzyme in respect to activity, stability, 16 S. Sulaiman, M. N. Mokhtar, M. N. Naim, A. S. Baharuddin
Enzym., 2016, 127, 89–92.
and reusability, where the HANCD@urease showed higher
thermo-stability than free urease for the in vitro dissociation of
and A. Sulaiman, Appl. Biochem. Biotechnol., 2015, 175,
1817–1842.
urea. The HANCD@urease was used as an in vitro tight source of 17 B. Sahoo, S. K. Sahu and P. Pramanik, J. Mol. Catal. B:
urease and a stable biosensor for urea determination in blood Enzym., 2011, 69, 95–102.
serum and aqueous samples. Additionally, the urease immo- 18 H. D. Mai, G. Y. Sung and H. Yoo, RSC Adv., 2015, 5, 78807–
bilized on HANCD presented high catalytic activity for the bio- 78814.
production of ammonia in the efficient synthesis of 3,5- 19 H.-c. Tsai and R.-a. Doong, Biosens. Bioelectron., 2007, 23, 66–
dimethyl-4-aryl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:40,30-e]pyri-
73.
dine derivatives in water by a pseudo-six-component reaction of 20 H.-H. Deng, H.-P. Peng, K.-Y. Huang, S.-B. He, Q.-F. Yuan,
hydrazine hydrate, alkyl acetoacetate, aromatic aldehyde, and
urea. High yields, bio-production of ammonia, and facile
Z. Lin, R.-T. Chen, X.-H. Xia and W. Chen, ACS Sens., 2019,
4, 344–352.
manipulations are advantages of this useful and green urease- 21 E. Hearn and R. J. Neufeld, Process Biochem., 2000, 35, 1253–
catalyzed protocol.
1260.
˙
˘
22 Y. Ispirli Dogaç, I. Deveci, M. Teke and B. Mercimek, Mater.
Sci. Eng., C, 2014, 42, 429–435.
23 K. Gabrovska, A. Georgieva, T. Godjevargova, O. Stoilova and
N. Manolova, J. Biotechnol., 2007, 129, 674–680.
24 S. Kumar, A. Dwevedi and A. M. Kayastha, J. Mol. Catal. B:
Enzym., 2009, 58, 138–145.
25 S. Sungur, M. Elcin and U. Akbulut, Biomaterials, 1992, 13,
795–800.
26 S. Mulagalapalli, S. Kumar, R. C. R. Kalathur and
A. M. Kayastha, Appl. Biochem. Biotechnol., 2007, 142, 291–
297.
Conflicts of interest
The authors declare no conicts of interest.
Acknowledgements
The authors gratefully acknowledge the Yazd University
Research Council.
Notes and references
27 L. Andrich, M. Esti and M. Moresi, J. Agric. Food Chem., 2010,
58, 6747–6753.
´
1 J. Enoki, M. Linhorst, F. Busch, A. G. Baraibar, K. Miyamoto,
¨
R. Kourist and C. Mugge, Mol. Catal., 2019, 467, 135–142.
28 E. Çevik, M. ¸Senel and M. F. Abasıyanık, J. Solid State
Electrochem., 2012, 16, 367–373.
¨
2 Y. Zhang, S. Xie, M. Yan and O. Ramstrom, Mol. Catal., 2019,
470, 138–144.
29 S. J. Eichhorn, So Matter, 2011, 7, 303–315.
3 K. Khoshnevisan, F. Vakhshiteh, M. Barkhi, H. Baharifar, 30 L. K. Kian, M. Jawaid, H. Ariffin and Z. Karim, Int. J. Biol.
E. Poor-Akbar, N. Zari, H. Stamatis and A.-K. Bordbar, Mol.
Catal., 2017, 442, 66–73.
Macromol., 2018, 114, 54–63.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 41893–41902 | 41901