ACS Medicinal Chemistry Letters
Letter
(19) Arthur, C. R.; Gupton, J. T.; Kellogg, G. E.; Yeudall, W. A.;
Cabot, M. C.; Newsham, I. F.; Gewirtz, D. A. Autophagic Cell Death,
Polyploidy and Senescence Induced in Breast Tumor Cells by the
Substituted Pyrrole JG-03−14, a Novel Microtubule Posion. Biochem.
Pharmacol. 2007, 74, 981−991.
REFERENCES
■
(1) Jordan, M. A.; Wilson, L. Microtubules as a Target for Anticancer
Drugs. Nat. Rev. Cancer 2004, 4, 253−265.
(2) Dumontet, C.; Jordan, M. A. Microtubule-Binding Agents, A
Dynamic Field of Cancer Therapeutics. Nat. Rev. Drug Discovery 2010,
9, 790−803.
(3) Bennett, M. J.; Barakat, K.; Huzil, J. T.; Tuszynski, J.; Schriemer,
D. C. Discovery and Characterization of the Laulimalide-Microtubule
Binding Mode by Mass Shift Perturbation Mapping. Chem. Biol. 2010,
17, 725−734.
(4) Stanton, R. A.; Gernert, K. M.; Nettles, J. H.; Aneja, R. Drugs
That Target Dynamic Microtubules: A New Molecular Perspective.
Med. Res. Rev. 2011, 31, 443−481.
(5) Siemann, D. W. The Unique Characteristics of Tumor
Vasculature and Preclinical Evidence for Its Selective Disruption by
Tumor-Vascular Disrupting Agents. Cancer Treat. Rev. 2011, 37, 63−
74.
(6) Seve, P.; Dumontet, C. Is Class III Beta-tubulin a Predictive
Factor in Patients Receiving Tubulin-binding Agents? Lancet Oncol.
2008, 9, 168−175.
(7) Stengel, C.; Newman, S. P.; Leese, M. P.; Potter, B. V.; Reed, M.
J.; Purohit, A. Class III Beta-tubulin Expression and in vitro Resistance
to Microtubule Targeting Agents. Br. J. Cancer 2010, 102, 316−324.
(8) Chen, J.; Liu, T.; Dong, X.; Hu, Y. Recent Development and SAR
Analysis of Colchicine Binding Site Inhibitors. Mini-Rev. Med. Chem.
2009, 9, 1174−1190.
(20) Jones, G; Willett, P; Glen, R. Molecular Recognition of
Receptor Sites Using a Genetic Algorithm with a Description of
Desolvation. J. Mol. Biol. 1995, 245, 43−53.
(21) Wireko, F. C.; Kellogg, G. E.; Abraham, D. J. Allosteric
Modifiers of Hemoglobin. 2. Crystallographically Determined Binding
Sites and Hydrophobic Binding/Interaction Analysis of Novel
Hemoglobin Oxygen Effectors. J. Med. Chem. 1991, 34, 758−767.
(22) Bhattacharyya, B.; Panda, D.; Gupta, S.; Banerjee, M. Anti-
Mitotic Activity of Colchicine and the Structural Basis for Its
Interaction with Tubulin. Med. Res. Rev. 2008, 28, 155−183.
(23) Andreu, J. M.; Perez-Ramirez, B.; Gorbunoff, M. J.; Ayala, D.;
Timasheff, S. N. Role of the Colchicine Ring A and Its Methoxy
Groups in the Binding to Tubulin and Microtubule Inhibition.
Biochemistry 1998, 37, 8356−8368.
(24) Hastie, S. B.; Williams, R. C. Jr; Puett, D.; Macdonald, T. L. The
Binding of Isocolchicine to Tubulin. Mechanisms of Ligand
Association with Tubulin. J. Biol. Chem. 1989, 264, 6682−6688.
(25) Staretz, M. E.; Hastie, S. B. Synthesis and Tubulin Binding of
Novel C-10 Analogues of Colchicine. J. Med. Chem. 1993, 36, 758−
764.
(9) Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.;
Sobel, A.; Knossow, M. Insight into Tubulin Regulation from a
Complex with Colchicine and a Stathmin-like Domain. Nature 2004,
428, 198−202.
(10) Dorleans, A.; Gigant, B.; Ravelli, R. B.; Mailliet, P.; Mikol, V.;
Knossow, M. Variations in the Colchicines-binding Domain Provide
Insight into Structural Switch of Tubulin. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 13775−13779.
(11) Nguyen, T. L.; McGrath., C.; Hermone, A. R.; Burnett, J. C.;
Zaharevitz, D. W.; Day, B. W.; Wipf., P.; Hamel, E.; Gussio, R. A
Common Pharmacophore for a Diverse Set of Colchicine Site
Inhibitors Using a Structure-Based Approach. J. Med. Chem. 2005, 48,
6107−6116.
(12) Mooberry, S. L.; Weiderhold, K. N.; Dakshanamurthy, S.;
Hamel, E.; Banner, E. J.; Kharlamova, A.; Hempel, J.; Gupton, J. T.;
Brown, M. L. Identification and Characterization of a New Tubulin-
Binding Tetrasubstituted Brominated Pyrrole. Mol. Pharmacol. 2007,
72, 132−140.
(13) Cleaveland, E. S.; Monks, A.; Vaigro-Wolff, A.; Zaharevitz, D.
W.; Paull, K.; Ardalan, K.; Cooney, D. A.; Ford, H. Jr. Site of Action of
Two Novel Pyrimidine Biosynthesis Inhibitors Accurately Predicted by
the COMPARE Program. Biochem. Pharmacol. 1995, 49, 947−954.
(14) Tripathi, A.; Fornabaio, M.; Kellogg, G. E.; Gupton, J. T.;
Gewirtz, D. A.; Yeudall, W. A.; Vega, N. E.; Mooberry, S. L. Docking
and Hydrophobic Scoring of Polysubstituted Pyrrole Compounds with
Antitubulin Activity. Bioorg. Med. Chem. 2008, 16, 2235−2242.
(15) Kellogg, G. E.; Abraham, D. J. Hydrophobicity: Is LogPo/w
More than the Sum of Its Parts? Eur. J. Med. Chem. 2000, 35, 651−
661.
(16) Spyrakis, F.; Amadasi, A.; Fornabaio, M.; Abraham, D. J.;
Mozzarelli, A.; Kellogg, G. E.; Cozzini, P. The Consequences of
Scoring Docked Ligand Conformations using Free Energy Correla-
tions. Eur. J. Med. Chem. 2007, 42, 921−933.
(17) Gupton, J.; Burnham, B.; Krumpe, K.; Du, K.; Sikorski, J.;
Warren, A.; Barnes, C.; Hall, I. Synthesis and Cytotoxicity of 2,4-
Disubstituted and 2,3,4-Trisubstituted Brominated Pyrroles in Murine
and Human Cultured Tumor Cells. Arch. Pharm. Pharm. Med. Chem.
2000, 333, 3−9.
(18) Dalyot-Herman, N.; Delgado-Lopez, F.; Gewirtz, D. A.;
Gupton, J. T.; Schwartz, E. L. Interference with Endothelial Cell
Function by JG-03−14, An Agent that Binds to the Colchicine Site on
Microtubules. Biochem. Pharmacol. 2009, 78, 1167−1177.
57
dx.doi.org/10.1021/ml200217u|ACS Med. Chem. Lett. 2012, 3, 53−57