Journal of the American Chemical Society
COMMUNICATION
’ ASSOCIATED CONTENT
5381–5383. (b) Hamasaka, G.; Kawamorita, S.; Ochida, A.; Akiyama, R.;
Hara, K.; Fukuoka, A.; Asakura, K.; Chun, W. J.; Ohmiya, H.; Sawamura, M.
Organometallics 2008, 27, 6495–6506. (c) Kawamorita, S.; Hamasaka, G.;
Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura, M. Org. Lett. 2008, 10,
4697–4700. (d) Kawamorita, S.; Ohmiya, H.; Iwai, T.; Sawamura, M.
Angew. Chem., Int. Ed. 2011, 50, 8363–8366.
S
Supporting Information. Experimental details and char-
b
acterization data for new compounds. This material is available
(11) Synthesis and properties of Silica-TRIP: Miyazaki, T.; Kawamor-
ita, S.; Ohmiya, H.; Sawamura, M. Presented at the 91st Annual Meeting of
the Chemical Society of Japan, Kanagawa, March 26ꢀ29, 2011, 4C9-13.
Details will be reported elsewhere.
(12) Synthesis of 9-phospha-10-silatriptycene derivatives was re-
ported by Tsuji, Tamao, and co-workers, while compound L1 and the
immobilization have not yet been described: Tsuji, H.; Inoue, T.;
Kaneta, Y.; Sase, S.; Kawachi, A.; Tamao, K. Organometallics 2006, 25,
6142–6148.
(13) Other transition metal catalysts based on Ir, Pd, and Pt were not
effective under these conditions. See Supporting Information for the
screening of metal sources.
(14) Silica-SMAP-Rh catalyst was easily separated from the products by
filtration through Celite. Attempts to reuse the catalyst were unsuccessful.
(15) With 1 equiv of 1a, borylation under otherwise the same
conditions afforded 3a (97%) and 20,60-diborylation product (3%).
(16) After the reaction, 1 equiv of pinB-H was detected in the crude
mixture by 1H NMR.
(17) Borylation of 1a with pinB-H proceeded at 60 °C (12 h, 71%).
(18) Reaction under phosphine-free conditions was complete in
12 h to afford 3a in 106% GC yield. Thus, [Rh(OH)(cod)]2 itself is an
effective catalyst precursor for borylation of 1a. However, the substrate
scope of the phosphine-free Rh catalysis appeared to be quite narrow.
See Supporting Information for the reaction of various substrates with
the phosphine-free Rh catalyst system.
(19) See Supporting Information for the synthesis of Silica-TPP.
Details will be reported elsewhere.
(20) See Supporting Information for the reaction of various sub-
strates with the Rh-PCy3 catalyst system.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was supported by Grants-in-Aid for Scientific
Research on Innovative Areas “Organic Synthesis Based on
Reaction Integration” and a Global COE grant (Project No.
B01: Catalysis as the Basis for Innovation in Materials Science),
MEXT. S.K. thanks JSPS for scholarship support.
’ REFERENCES
(1) Reviews on applications of arylboronic acid derivatives: (a)
Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Meijere,
A. D., Ed.; Wiley-VCH: Weinheim, 2004; pp 125ꢀ162. (b) Suzuki, A. In
Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2005; pp
123ꢀ170. (c) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535–1552.
(2) Mkhalid, I. A.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890–931.
(3) Ir-catalyzed borylation of aromatic CꢀH bonds with bis-
(pinacolato)diboron: (a) Iverson, C. N.; Smith, M. R., III J. Am. Chem.
Soc. 1999, 121, 7696–7697. (b) Cho, J.-Y.; Iverson, C. N.; Smith, M. R., III
J. Am. Chem. Soc. 2000, 122, 12868–12869. (c) Cho, J.-Y.; Tse, M. K.;
Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III Science 2002,
295, 305–308. (d) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi,
N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390–391. (e) Ishiyama, T.;
Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002,
41, 3056–3058. (f) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama,
T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263–14278.
(4) Rh-catalyzed borylation of aromatic CꢀH bonds with bis-
(pinacolato)diboron: (a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig,
J. F. Science 2000, 287, 1995–1997. (b) Shimada, S.; Batsanov, A. S.;
Howard, J. A. K.; Marder, T. B. Angew. Chem., Int. Ed. 2001,
40, 2168–2171. (c) Mertins, K.; Zapf, A.; Beller, M. J. Mol. Catal. A:
Chem. 2004, 207, 21–25. See also ref 3b.
(21) The Lewis-acidic boron atom at the ortho position might
promote hydrolysis of the oxazoline ring. The same phenomenon was
already reported: Altman, J.; B€ohnke, H.; Steigel, A.; Wulff, G. J. Organomet.
Chem. 1986, 309, 247–256.
(22) Examples of catalytic CꢀH functionalizations with this type of
directing groups: (a) Kakiuchi, F.; Igi, K.; Matsumoto, M.; Hayamizu, T.;
Chatani, N.; Murai, S. Chem. Lett. 2002, 396–397. (b) Desai, L. V.;
Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285–13293.
(c) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141–1144.
(23) Exceptional cases: Cai, G.; Fu, Y.; Wan, X.; Shi, Z. J. Am. Chem.
Soc. 2007, 129, 7666–7673. See also ref 22a.
(5) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130,
(24) See Supporting Information for other examples and limitations.
(25) Directed ortholithiation using stoichiometric organolithium
reagents is not applicable to pyridine and pyrrazole derivatives because
they are susceptible to nucleophilic addition of the organolithium
reagents: Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon:
Amsterdam, The Netherlands, 2002; Chapter 2.
(26) SuzukiꢀMiyaura coupling of 3e and 3k with 4-methoxycarbonyl-
bromobenzene (1.5 equiv) proceeded successively: Pd(PPh3)4 (5 mol%),
K3PO4 (3equiv), THF/H2O (5:1), 60°C, 12 h, 74% and 90% NMR yields,
respectively.
(27) Photophysical and electronic properties of N-functionalized
organoboron compounds with intramolecular BꢀN interactions have
received recent attention: (a) Wakamiya, A.; Taniguchi, T.; Yamaguchi,
S. Angew. Chem., Int. Ed. 2006, 45, 3170–3173. (b) Yoshino, J.; Kano, N.;
Kawashima, T. Chem. Commun. 2007, 559–561. (c) Ishida, N.; Narumi,
M.; Murakami, M. Org. Lett. 2008, 10, 1279–1281. (d) Baik, C.; Hudson,
Z. M.; Amarne, H.; Wang, S. J. Am. Chem. Soc. 2009, 131, 14549–14559.
(e) Yoshino, J.; Kano, N.; Kawashima, T. J. Org. Chem. 2009,
74, 7496–7503. (f) Ishida, N.; Moriya, T.; Goya, T.; Murakami, M. J. Org.
Chem. 2010, 75, 8709–8712. (g) Ishida, N.; Ikemoto, W.; Narumi, M.;
Murakami, M. Org. Lett. 2011, 13, 3008–3011.
7534–7535.
(6) Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem. Commun.
2010, 46, 159–161.
(7) (a) Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura,
M. J. Am. Chem. Soc. 2009, 131, 5058–5059. (b) Kawamorita, S.; Ohmiya,
H.; Sawamura, M. J. Org. Chem. 2010, 75, 3855–3858. (c) Yamazaki, K.;
Kawamorita, S.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12, 3978–3981.
(8) After submission of our manuscript, Ir-catalyzed borylation of
2-phenylpyridine and aromatic N,N-dimethylhydrazone derivatives ap-
peared: Ros, A.; Estepa, B.; Lopez-Rodriguez, R.; Alvarez, E.; Fernandez,
R.; Lassaletta, J. M. Angew. Chem., Int. Ed. 2011, DOI: 10.1002/
anie.201104544.
(9) SMAP = silicon-constrained monodentate trialkylphosphine:
(a) Ochida, A.; Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2003,
5, 2671–2674. (b) Ochida, A.; Ito, S.; Miyahara, T.; Ito, H.; Sawamura,
M. Chem. Lett. 2006, 35, 294–295. (c) Ochida, A.; Hamasaka, G.;
Yamauchi, Y.; Kawamorita, S.; Oshima, N.; Hara, K.; Ohmiya, H.;
Sawamura, M. Organometallics 2008, 27, 5494–5503. (d) Hara, K.;
Akiyama, R.; Takakusagi, S.; Uosaki, K.; Yoshino, T.; Kagi, H.; Sawamura, M.
Angew. Chem., Int. Ed. 2008, 47, 5627–5630.
(10) Synthesis and applications of Silica-SMAP: (a) Hamasaka, G.;
Ochida, A.; Hara, K.; Sawamura, M. Angew. Chem., Int. Ed. 2007, 46,
19313
dx.doi.org/10.1021/ja208364a |J. Am. Chem. Soc. 2011, 133, 19310–19313