Inorganic Chemistry
Communication
bond18 and a Ru−Ru single bond, respectively, and with the
diamagnetic character of both cations. Also, the Ru1−S1−Ru1b
angle in 7 is significantly more acute [61.63(4)°] than that in
the Cp analogue [73.9(1)°], suggesting a much stronger Ru−
Ru interaction. The contraction in Ru−Ru bond distances upon
going from Cp to Cp*, which is a stronger donor, is a most
interesting observation. In spite of this, the observed short
distance does not necessarily imply multiple bonding. Density
functional theory calculations are clearly needed here in order
to clarify the status of the metal−metal interactions in this
complex.
ASSOCIATED CONTENT
* Supporting Information
X-ray crystallographic data in CIF format, detailed synthetic
procedures, NMR spectral data for the complexes, and
experimental details for the X-ray structure analysis of 7. This
material is available free of charge via the Internet at http://
■
S
AUTHOR INFORMATION
Corresponding Author
uca.es (M.C.P.). Fax: (+34) 956 016288.
■
We can tentatively explain the formation of the dinuclear
complex 7 at the expense of the hydrido(alkoxide) complexes
3a and 3b by considering an electron transfer from the hydride
to the metal, leading to an intermediate ruthenium(III)
alkoxide species with concomitant loss of dihydrogen.
Migration of the alkoxide group over the PiPr2 moiety with
subsequent cleavage of the P−S bond would generate
ACKNOWLEDGMENTS
We thank the Spanish Ministerio de Investigacio
■
́
Innovacio
́
́
Andalucıa (Grants PAI FQM188 and P08 FQM 03538) for
financial support and Johnson Matthey plc for generous loans
of ruthenium trichloride.
i
P(OR)iPr2 (R = Me, Pr) plus [(C5Me5)Ru(SC5H4N)]+.
Dimerization of the latter yields 7 (Scheme 2).
REFERENCES
■
Scheme 2. Proposed Reaction Sequence for the Formation
of 7
(1) (a) Tani, K.; Kataoka, Y. In Catalytic Heterofunctionalization;
Togni, A., Grutzmacher H., Eds.; Wiley-VCH: Weinheim, Germany,
̈
2001. (b) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163−1188.
(2) Milstein, D. Top. Catal. 2010, 53, 915−923.
(3) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317,
790−792.
(4) Pam
̀
ies, O.; Backval, J.-E. Chem.Eur. J. 2001, 7, 5052−5058.
̈
(5) Macías-Arce, I.; Puerta, M. C.; Valerga, P. Eur. J. Inorg. Chem.
2010, 1767−1776.
(6) Burn, M. J.; Fickes, M. G.; Hartwig, J. F.; Hollander, F. J.;
Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 5875−5876.
(7) Burn, M. J.; Fickes, M. G.; Hollander, F. J.; Bergman, R. G.
Organometallics 1995, 14, 137−150.
(8) Hayashi, Y.; Komiya, S.; Yamamoto, Y.; Yamamoto, A. Chem.
Lett. 1984, 1363−1366.
́ ́
(9) Jimenez-Tenorio, M. A.; Jimenez-Tenorio, M.; Puerta, M. C.;
Valerga, P. J. Chem. Soc., Dalton Trans. 1998, 3601−3607.
(10) Aneetha, H.; Jimenez-Tenorio, M.; Puerta, M. C.; Valerga, P.;
́
Sapunov, V. N.; Schmid, R.; Kirchner, K.; Mereiter, K. Organometallics
2002, 21, 5334−5346.
(11) Jimen
Inorg. Chem. 2007, 47, 1001−1012.
(12) Jimenez-Tenorio, M.; Puerta, M. C.; Valerga, P.; Moncho, S.;
Ujaque, G.; Lledos
́
ez-Tenorio, M.; Palacios, M. D.; Puerta, M. C.; Valerga, P.
́
́
, A. Inorg. Chem. 2010, 49, 6035−6057.
(13) Findlater, M.; Bernskoetter, W. H.; Brookhart, M. J. Am. Chem.
Soc. 2010, 132, 4534−4535.
(14) Jimenez-Tenorio, M.; Puerta, M. C.; Valerga, P., work in
We have monitored by NMR a CD2Cl2 solution of 3a over a
period of several days. A gradual decrease of the intensity of the
signals for 3a and the appearance of one broad resonance at 4.5
́
progress.
(15) Zhao, J.; Hesslink, H.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
7220−7227.
1
ppm in the H NMR spectrum attributable to free H2 and of
(16) Nishibayashi, Y.; Imajima, H.; Onodera, G.; Inada, Y.; Hidai, M.;
Uemura, S. Organometallics 2004, 23, 5100−5103, and references
cited therein.
one signal at ca. 65 ppm in the 31P{1H} NMR that we ascribe
to P(OMe)iPr2 or to a degradation product thereof were
observed. These observations support the reaction sequence
shown in Scheme 2. From this work, it is clear that half-
sandwich ruthenium complexes containing mercaptopyridyl- or
mercaptoquinolylphosphine ligands are capable of performing
facile OH activation in a number of alcohols, furnishing
hydrido(alkoxo) derivatives. We are currently carrying out
detailed studies on these systems, in order to understand their
unusual reactivity and to expand their applicability to the
activation of O−H bonds present in other alcohols as well as in
water.
(17) Becker, E.; Mereiter, K.; Schmid, R.; Kirchner, K.
Organometallics 2004, 23, 2876−2883.
(18) Takao, T.; Amako, M.; Suzuki, H. Organometallics 2003, 22,
3855−3876.
12401
dx.doi.org/10.1021/ic201912b | Inorg. Chem. 2011, 50, 12399−12401