ORGANIC
LETTERS
2012
Vol. 14, No. 1
90–93
Stereoselective Synthesis of
Brevianamide E
Liang Zhao, Jonathan P. May, Jack Huang, and David M. Perrin*
Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver,
B.C. V6T 1Z1, Canada
Received October 25, 2011
ABSTRACT
The hydroxypyrroloindolenine (Hpi) motif forms the fundamental core of the pentacyclic natural product, brevianamide E, the concise
stereoselective synthesis of which, via oxidative cyclization, is described.
The brevianamides comprise a series of multicyclic
natural products originally isolated from Penicillium
brevicompactum.1,2 These compounds represent challen-
ging targets in terms of a concise organic synthesis. In
particular, the pentacyclic natural product brevianamide E
(1, Figure 1) represents an interesting challenge for the
construction of five fused rings and four stereogenic
centers, comprising a syn-cis configured hydroxypyrro-
loindolenine (Hpi) core (shown in red in abstract graphic
and Figure 1). Moreover, the Hpi represents a “toxico-
phoric” motif in numerous other natural products of
abiding and current general interest.3À18 The interest in
brevianamide E itself is underscored by the fact that it has
been the subject of a number of syntheses over the past 30
years and still presents a challenge for creating a syn-cis
Hpi.1,19À23 Previous syntheses exploited a common strat-
egy predicated on the formal construction of the reduced
deoxybrevianamide E, as the penultimate product 2
(Figure 1), which is oxidatively cyclized to the title
(11) Yu, S. M.; Hong, W. X.; Wu, Y.; Zhong, C. L.; Yao, Z. J. Org.
Lett. 2010, 12, 1124.
(12) Gonzalez-Vera, J. A.; Garcia-Lopez, M. T.; Herranz, R. Tetra-
hedron 2007, 63, 9229.
(13) Kim, Y. A.; Han, S. Y. Synth. Commun. 2004, 34, 2931.
(14) Buchel, E.; Martini, U.; Mayer, A.; Anke, H.; Sterner, O.
Tetrahedron 1998, 54, 5345.
(15) Roe, J. M.; Webster, R. A. B.; Ganesan, A. Org. Lett. 2003, 5,
2825.
(16) Greenman, K. L.; Hach, D. M.; Van Vranken, D. L. Org. Lett.
2004, 6, 1713.
(17) Hewitt, P. R.; Cleator, E.; Ley, S. V. Org. Biomol. Chem. 2004, 2,
2415.
(1) Birch, A. J.; Wright, J. J. J. Chem. Soc., Chem. Commun. 1969,
644.
(2) Wilson, B. J.; Yang, D. T. C.; Harris, T. M. Appl. Microbiol. 1973,
26, 633.
(3) Schkeryantz, J. M.; Woo, J. C. G.; Danishefsky, S. J. J. Am.
Chem. Soc. 1995, 117, 7025.
(4) Kolundzic, F.; Noshi, M. N.; Tjandra, M.; Movassaghi, M.;
Miller, S. J. J. Am. Chem. Soc. 2011, 133, 9104.
(5) Kamenecka, T. M.; Danishefsky, S. J. Chem.;Eur. J. 2001, 7, 41.
(6) Shibahara, S.; Matsubara, T.; Takahashi, K.; Ishihara, J.;
Hatakeyama, S. Org. Lett. 2011, 13, 4700.
(18) Pettit, G. R.; Tan, R.; Herald, D. L.; Cerny, R. L.; Williams,
M. D. J. Org. Chem. 1994, 59, 1593.
(19) Ritchie, R.; Saxton, J. E. J. Chem. Soc., Chem. Commun. 1975,
611.
(7) Kamenecka, T. M.; Danishefsky, S. J. Angew. Chem., Int. Ed.
1998, 37, 2993.
(20) Kametani, T.; Kanaya, N.; Ihara, M. J. Am. Chem. Soc. 1980,
102, 3972.
(8) Kamenecka, T. M.; Danishefsky, S. J. Angew. Chem., Int. Ed.
1998, 37, 2995.
(21) Kametani, T.; Kanaya, N.; Ihara, M. J. Chem. Soc., Perkin
Trans. 1 1981, 959.
(22) Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew,
K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964.
(23) Sanzcervera, J. F.; Glinka, T.; Williams, R. M. J. Am. Chem.
Soc. 1993, 115, 347.
(9) Oelke, A. J.; Antonietti, F.; Bertone, L.; Cranwell, P. B.; France,
D. J.; Goss, R. J. M.; Hofmann, T.; Knauer, S.; Moss, S. J.; Skelton,
P. C.; Turner, R. M.; Wuitschik, G.; Ley, S. V. Chem.;Eur. J. 2011, 17,
4183.
(10) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Alvarez, M.
Chem.;Eur. J. 2011, 17, 1388.
r
10.1021/ol202880y
Published on Web 11/29/2011
2011 American Chemical Society