6692
K. Motokura et al. / Tetrahedron Letters 52 (2011) 6687–6692
2. Intermolecular allylsilylation: (a) Asao, N.; Yoshikawa, E.; Yamamoto, Y. J. Org.
Chem. 1996, 61, 4874; (b) Yoshikawa, E.; Gevorgyan, V.; Asao, N.; Yamamoto, Y.
J. Am. Chem. Soc. 1997, 119, 6781; (c) Yeon, S. H.; Han, J. S.; Hong, E.; Do, Y.;
Jung, I. N. J. Organomet. Chem. 1995, 499, 159; (d) Asao, N.; Tomeba, H.;
Yamamoto, Y. Tetrahedron Lett. 2005, 46, 27.
3. Intramolecular allylsilylation: (a) Imamura, K.-i.; Yoshikawa, E.; Gevorgyan, V.;
Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 5339; (b) Matsuda, T.; Kadowaki, S.;
Yamaguchi, Y.; Murakami, M. Chem. Commun. 2008, 2744; (c) Horino, Y.;
Nakashima, Y.; Hashimoto, K.; Kuroda, S. Synlett 2010, 2879.
2.15 (s, 6H), 2.27 (s, 3H), 5.65 (s, 1H), 6.84 (s, 2H), 7.22 (m, 5H);
13C{1H} NMR (100.61 MHz. CDCl3): 0.39, 20.5, 21.0, 127.4, 127.7,
128.2, 128.5, 133.1, 134.9, 136.0, 142.2, 142.8, 156.7; MS (EI) m/z
(%): 59, 73(100), 135, 177, 207, 220, 279, 294(M+). The trans rela-
tionship of the mesityl and silyl groups was confirmed by H–H
NOESY.
4. Arylsilylation: (a) Asao, N.; Shimada, T.; Shimada, T.; Yamamoto, Y. J. Am. Chem.
Soc. 2001, 123, 10899; (b) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org. Chem.
2000, 65, 4913; (c) Agenet, N.; Mirebeau, J.-H.; Petit, M.; Thouvenot, R.;
Gandon, V.; Malacria, M.; Aubert, C. Organometallics 2007, 26, 819.
5. Motokura, K.; Matsunaga, S.; Miyaji, A.; Sakamoto, Y.; Baba, T. Org. Lett. 2010,
12, 1508.
6. Formation of silyl cation on the montmorillonite surface: (a) Higuchi, K.;
Onaka, M.; Izumi, Y. Bull. Chem. Soc. Jpn. 1993, 66, 2016; (b) Wang, J.; Masui, Y.;
Watanabe, K.; Onaka, M. Adv. Synth. Catal. 2009, 351, 553.
7. The reactivities of internal alkynes were much lower than those of the terminal
alkynes. For example, the allylsilylation of 1-phenyl-1-propyne afforded less
than 10% yield of product for 24 h.
8. b-Silyl alkenylcations have been reported: (a) Siehl, H.-U.; Kaufmann, F.-P.;
Apeloig, Y.; Braude, V.; Danovich, D.; Berndt, A.; Stamatis, N. Angew. Chem., Int.
Ed. Engl. 1991, 30, 1479; (b) Kresge, A. J.; Tobin, J. B. Angew. Chem., Int. Ed. Engl.
1993, 32, 721.
Terminal silylation of alkynes
The typical procedure for terminal silylation of phenylacetylene
(1a) with allyltrimethylsilane (2a) is as follows. Into a glass reactor
were placed the H+-montmorillonite (0.10 g), 1,4-dioxane (1.0 mL),
1a (1.0 mmol), and 2a (3.0 mmol) under a dry Ar atmosphere using
Schlenk techniques. The resulting mixture was vigorously stirred
at 100 °C. After 150 min, the catalyst was separated by filtration.
GC analysis of the filtrate showed a 76% yield of trimethyl(phenyl-
ethynyl)silane (5aa). The product was identified by comparison
with the reported 1H and 13C NMR and mass spectral data.13
9. Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621.
10. Baba, T.; Kato, A.; Yuasa, H.; Toriyama, F.; Handa, H.; Ono, Y. Catal. Today 1998,
44, 271.
11. The selectivity of silylated alkyne (5) based on the alkyne (1) used was high.
However, the formation of silylated ether solvent, such as 1,2-
bis(trimethylsiloxy)ethane, was also detected.
Acknowledgments
This work was supported by The Noguchi Institute (NJ200909).
The authors thank Center for Advanced Materials Analysis
(Suzukakedai), Technical Department, Tokyo Institute of Technol-
ogy, for NMR and elemental analysis.
12. Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew.
Chem., Int. Ed. 2006, 45, 2605.
13. For silylation product data, see: 5aa and 5ba: (a) Cai, M.; Sha, J.; Xu, Q.
Tetrahedron 2007, 63, 4642; 5ca: (b) Sakai, N.; Komatsu, R.; Uchida, N.; Ikeda,
R.; Konakahara, T. Org. Lett. 2010, 12, 1300; 5ea: (c) Hameury, T.; Guillemont, J.;
Hijfte, L. V.; Bellosta, V.; Cossy, J. Org. Lett. 2009, 11, 2397; 5da: (d) Shimizu, K.;
Takimoto, M.; Sato, Y.; Mori, M. Org. Lett. 2005, 7, 195; 5ad: (e) Batail, N.;
Bendjeriou, A.; Lomberget, T.; Barret, R.; Dufaud, V.; Djakovitch, L. Adv. Synth.
Catal. 2009, 351, 2055.
References and notes
1. Recent reports on the transformation of substituted vinyl silanes: (a) Källström,
K.; Munslow, I. J.; Hedberg, C.; Andersson, P. G. Adv. Synth. Catal. 2006, 348,
2575; (b) Parker, K. A.; Denton, R. W. Tetrahedron Lett. 2011, 52, 2115; (c)
Greedy, B.; Gouverneur, V. Chem. Commun. 2001, 233; (d) Warren, J. D.; Shi, Y. J.
Org. Chem. 1999, 64, 7675.