3
4.01 (t, JHH = 6.5 Hz, 2H; OCH2), 6.46 (d, JHH = 2.0 Hz,
4
4 (a) S. J. Wezenberg, D. Anselmo, E. C. Escudero-Ada
Buchholz and A. W. Kleij, Eur. J. Inorg. Chem., 2010, 4611–4616;
(b) M. Cano, L. Rodrıguez, J. C. Lima, F. Pina, A. Dalla Cort,
´
n, J. Benet-
3
1H; ArH), 6.55 (dd, JHH = 8.5 Hz, JHH = 2.0 Hz, 1H;
4
´
3
ArH), 7.61 (d, JHH = 8.5 Hz, 1H; ArH), 9.99 (s, 1H; CHO).
C. Pasquini and L. Schiaffino, Inorg. Chem., 2009, 48, 6229–6235;
(c) S. Khatua, S. H. Choi, J. Lee, K. Kim, Y. Do and
D. G. Churchill, Inorg. Chem., 2009, 48, 2993–2999.
5 A recent general review: A. W. Kleij, Dalton Trans., 2009,
4635–4639.
12-(4-Formyl-3-hydroxyphenoxy)-N,N,N-trimethyldodecan-1-
ammonium bromide. In a two necked-flask, closed by a CaCl2
tube,
a solution of 4-(12-bromododecyloxy)-2-hydroxy-
6 (a) E. C. Escudero-Adan, J. Benet-Buchholz and A. W. Kleij,
´
benzaldehyde (0.475 g, 1.23 mmol) in ethanol (40.0 mL) was
saturated with trimethylamine. The yellow-brine solution was
heated at 50 1C with stirring for 12 h and then concentrated to
obtain a yellow solid product (0.542 g, quantitative yield).
1H NMR (500 MHz, DMSO-d6, TMS): d = 1.39–1.42
(m, 16H; CH2), 1.64–1.72 (m, 4H; CH2), 3.03 (s, 9H;
N(CH3)3+), 3.03–3.27 (m, 2H; CH2–N(CH3)3+), 4.02
Inorg. Chem., 2008, 47, 4256–4263; (b) A. J. Gallant, J. H. Chong
and M. J. MacLachlan, Inorg. Chem., 2006, 45, 5248–5250;
(c) A. W. Kleij, M. Kuil, M. Lutz, D. M. Tooke, A. L. Spek,
P. C. K. Kamer, P. W. N. M. van Leeuwen and J. N. H. Reek,
Inorg. Chim. Acta, 2006, 359, 1807–1814; (d) G. Malandrino,
M. Blandino, L. M. S. Perdicaro, I. L. Fragala, P. Rossi and
P.
(e) J. S. Matalobos, A. M. Garcı
Dapporto,
Inorg.
Chem.,
2005,
a-Deibe, D. N. Fondo and
44,
9684–9689;
´
M. R. Bermejo, Inorg. Chem. Commun., 2004, 7, 311–314;
(f) J. Reglinski, S. Morris and D. E. Stevenson, Polyhedron,
2002, 21, 2175–2182.
3
4
(t, JHH = 6.5 Hz, 2H; OCH2), 6.46 (d, JHH = 2.0 Hz, 1H;
3
4
ArH), 6.54 (dd, JHH = 8.5 Hz, JHH = 2.0 Hz, 1H; ArH),
3
7.61 (d, JHH = 8.5 Hz, 1H; ArH), 9.99 (s, 1H; CHO).
7 (a) S. J. Wezenberg, E. C. Escudero-Adan, J. Benet-Buchholz and
´
A. W. Kleij, Chem.–Eur. J., 2009, 15, 5695–5700; (b) A. C. W.
Leung and M. J. MacLachlan, J. Mater. Chem., 2007, 17,
1923–1932; (c) A. W. Kleij, M. Kuil, D. M. Tooke, M. Lutz,
A. L. Spek and J. N. H. Reek, Chem.–Eur. J., 2005, 11, 4743–4750.
8 C. R. Bhattacharjee, G. Das, P. Mondal, S. K. Prasad and D. S. S.
Rao, Eur. J. Inorg. Chem., 2011, 1418–1424.
9 (a) J. K.-H. Hui and M. J. MacLachlan, Dalton Trans., 2010, 39,
7310–7319; (b) J. A. A. W. Elemans, S. J. Wezenberg, M. J. J.
´
Coenen, E. C. Escudero-Adan, J. Benet-Buchholz, D. den Boer,
S. Speller, A. W. Kleij and S. De Feyter, Chem. Commun., 2010, 46,
2548–2550; (c) J. K.-H. Hui, Z. Yu, T. Mirfakhrai and
M. J. MacLachlan, Chem.–Eur. J., 2009, 15, 13456–13465;
(d) S. Jung and M. Oh, Angew. Chem., Int. Ed., 2008, 47,
2049–2051; (e) J. K.-H. Hui, Z. Yu and M. J. MacLachlan, Angew.
Chem., Int. Ed., 2007, 46, 7980–7983.
10 (a) V. Liuzzo, W. Oberhauser and A. Pucci, Inorg. Chem.
Commun., 2010, 13, 686–688; (b) C. R. Bhattacharjee, G. Das,
P. Mondal and N. V. S. Rao, Polyhedron, 2010, 29, 3089–3096;
(c) K.-L. Kuo, C.-C. Huang and Y.-C. Lin, Dalton Trans., 2008,
3889–3898; (d) H.-J. Son, W.-S. Han, J.-Y. Chun, B.-K. Kang,
S.-N. Kwon, J. Ko, S. J. Han, C. Lee, S. J. Kim and S. O. Kang,
Inorg. Chem., 2008, 47, 5666–5676; (e) H.-C. Lin, C.-C. Huang,
C.-H. Shi, Y.-H. Liao, C.-C. Chen, Y.-C. Lin and Y.-H. Liu,
Dalton Trans., 2007, 781–791; (f) S. Di Bella, N. Leonardi,
G. Consiglio, S. Sortino and I. Fragala, Eur. J. Inorg. Chem.,
2004, 4561–4565; (g) C. Ma, A. Lo, A. Abdolmaleki and
M. J. MacLachlan, Org. Lett., 2004, 6, 3841–3844;
(h) K.-H. Chang, C.-C. Huang, Y.-H. Liu, Y.-H. Hu,
P.-T. Chou and Y.-C. Lin, Dalton Trans., 2004, 1731–1738;
(i) M. La Deda, M. Ghedini, I. Aiello and A. Grisolia, Chem.
Lett., 2004, 33, 1060–1061; (j) P. Wang, Z. Hong, Z. Xie, S. Tong,
O. Wong, C.-C. Lee, N. Wong, L. Hung and S. Lee, Chem.
Commun., 2003, 1664–1665.
11 (a) S. Di Bella, G. Consiglio, S. Sortino, G. Giancane and L. Valli,
Eur. J. Inorg. Chem., 2008, 5228–5234; (b) S. Di Bella,
G. Consiglio, G. La Spina, C. Oliva and A. Cricenti, J. Chem.
Phys., 2008, 129, 114704.
12 (a) S. Di Bella, C. Dragonetti, M. Pizzotti, D. Roberto, F. Tessore
and R. Ugo, Top. Organomet. Chem., 2010, 28, 1–55; (b) B. J. Coe,
in Comprehensive Coordination Chemistry II, ed. J. A. McCleverty
and T. J. Meyer, Elsevier Pergamon, Oxford, U.K., 2004, vol. 9,
pp. 621–687; (c) S. Di Bella, Chem. Soc. Rev., 2001, 30, 355–366.
13 (a) P. Job, Ann. Chem., 1928, 9, 113–134; (b) V. M. S. Gil and
N. C. Oliveira, J. Chem. Educ., 1990, 67, 473–478.
[2,3-Bis[[2-hydroxy-4-(1-N,N,N,N-trimethyldodecyl-12-oxy-
ammonium bromide)benzylidene] amino]-2-butenedinitrilato]
ZnII (1). To a solution of 12-(4-formyl-3-hydroxyphenoxy)-
N,N,N-trimethyldodecan-1-ammonium bromide (0.542 g,
1.22 mmol) in ethanol (30.0 mL), diaminomaleonitrile
(0.0660 g, 0.610 mmol) was added with stirring. The mixture
was heated at reflux with stirring for 1 h, under a nitrogen
atmosphere. To the red solution, zinc acetate dihydrate
(0.134 g, 0.610 mmol) was added and the mixture was heated
at reflux with stirring for 2 h, under a nitrogen atmosphere.
After cooling, a purple precipitate product was collected by
filtration, washed with ethanol, and dried in vacuo (0.324 g,
60%). C48H74Br2N6O4Zn (1024.35): calcd C, 56.28; H, 7.28;
N, 8.20%; found C, 56.73; H, 7.34; N, 8.30%. ESI: m/z =
1024 [M]+. MALDI-TOF: m/z = 1968 [(M)2 À Br]+.
1H NMR (500 MHz, DMSO-d6, TMS): d = 1.27–1.40
(m, 32H; CH2), 1.64–1.73 (m, 8H; CH2), 3.02 (s, 18H;
N(CH3)3+), 3.23–3.26 (m, 4H; CH2–N(CH3)3+), 3.99
3
4
(t, JHH = 6.5 Hz, 4H; OCH2), 6.17 (d, JHH = 2.0 Hz, 2H;
3
ArH), 6.21 (dd, JHH = 8.5 Hz, JHH = 2.0 Hz, 2H; ArH),
4
3
7.33 (d, JHH = 8.5 Hz, 2H; ArH), 8.36 (s, 2H; CH = N).
Acknowledgements
This research was supported by the MIUR and PRA (Progetti
di Ricerca di Ateneo).
Notes and references
1 (a) M. H. Salter, Jr, J. H. Reibenspies, S. B. Jones and
R. D. Hancock, Inorg. Chem., 2005, 44, 2791–2797;
(b) M. Subat, A. S. Borovik and B. Konig, J. Am. Chem. Soc.,
¨
2004, 126, 3185–3190; (c) G. Consiglio, S. Failla, P. Finocchiaro,
I. P. Oliveri and S. Di Bella, Dalton Trans., 2011, DOI: 10.1039/
C1DT11295C.
2 (a) G. Consiglio, S. Failla, P. Finocchiaro, I. P. Oliveri, R. Purrello
and S. Di Bella, Inorg. Chem., 2010, 49, 5134–5142;
(b) G. Consiglio, S. Failla, I. P. Oliveri, R. Purrello and S. Di
Bella, Dalton Trans., 2009, 10426–10428.
3 (a) M. E. Germain, T. R. Vargo, G. P. Khalifah and M. J. Knapp,
Inorg. Chem., 2007, 46, 4422–4429; (b) A. Dalla Cort,
L. Mandolini, C. Pasquini, K. Rissanen, L. Russo and
L. Schiaffino, New J. Chem., 2007, 31, 1633–1638; (c) C. T. L.
Ma and M. J. MacLachlan, Angew. Chem., Int. Ed., 2005, 44,
4178–4182.
14 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 2006.
15 In fact, despite the salt nature of the 2ÁBrTBA adduct, it is possible
achieving relatively high concentrated DCM solutions (up to
5 Â 10À3 M), in contrast to the very low solubility (r5 Â 10À5 M)
of 1 in DCM.
16 Note that, quaternary ammonium compounds when dissolved in
low permittivity organic solvents, such as THF and DCM, form
tight ion pairs.[17] Therefore, the occurrence of intermolecular
ZnÁ Á ÁBr interactions necessarily implies the formation of aggregate
structures.
c
2830 New J. Chem., 2011, 35, 2826–2831
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011