Journal of the American Chemical Society
COMMUNICATION
same as those in discrete Pd6L4 cage 2. Hence, the rich hostÀ
guest chemistry of 2 in solution10 can in principle be translated
into solid-state chemistry, offering various potential applications
of coordination network materials.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, charac-
b
terization data, and crystallographic data (CIF). This material is
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was supported by KAKENHI, Japan Society for the
Promotion of Science.
’ REFERENCES
(1) (a) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed.
2004, 43, 2334–2375. (b) Batten, S. R.; Robson, R. Angew. Chem., Int. Ed.
1998, 37, 1460–1494. (c) Fꢀerey, G. Chem. Soc. Rev. 2008, 37, 191–214.
(d) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi,
M.; Kim, J. Nature 2003, 423, 705–714. (e) Kawano, M.; Fujita, M.
Coord. Chem. Rev. 2007, 251, 2592–2605. (f) Li, Q.; Zhang, W.; Miljaniꢀc,
ꢁ
O. S.; Sue, C.-H.; Zhao, Y.-L.; Liu, L.; Knobler, C. B.; Stoddart, J. F.;
Yaghi, O. M. Science 2009, 325, 855–859. (g) Smaldone, R. A.; Forgan,
R. S.; Furukawa, H.; Gassensmith, J. J.; Slawin, A. M. Z.; Yaghi, O. M.;
Stoddart, J. F. Angew. Chem., Int. Ed. 2010, 49, 8630–8634.
(2) (a) Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315–1329.
(b) Tanabe, K. K.; Cohen, S. M. Chem. Soc. Rev. 2011, 40, 498–519. (c)
Inokuma, Y.; Kawano, M.; Fujita, M. Nat. Chem. 2011, 3, 349–358.
(3) (a) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.;
Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450–1459. (b) Corma, A.; Garcia,
H.; Xamena, F. X. L. Chem. Rev. 2010, 110, 4606–4655. (c) Ma, L.;
Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248–1256.
(4) In catalytic network systems, two substrates can be introduced as
a mixture because they hardly react with each other in the
supernatant. See: (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K.
J. Am. Chem. Soc. 1994, 116, 1151–1152. (b) Seo, J. S.; Whang, D.; Lee,
H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982–986. (c) Ma,
L.; Abney, C.; Lin, W.; Lin, W. B. J. Am. Chem. Soc. 2005, 127,
8940–8941.
(5) (a) Wang, Z.; Cohen, S. M. Angew. Chem., Int. Ed. 2008,
47, 4699–4702. (b) Kawamichi, T.; Kodama, T.; Kawano, M.; Fujita,
M. Angew. Chem., Int. Ed. 2008, 47, 8030–8032. (c) Kawamichi, T.;
Haneda, T.; Kawano, M.; Fujita, M. Nature 2009, 461, 633–635. (d)
Gadzikwa, T.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp,
J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2009, 131, 13613–13615.
(6) Inokuma, Y.; Arai, T.; Fujita, M. Nat. Chem. 2010, 2, 780–783.
(7) (a) Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi,
K.; Ogura, K. Nature 1995, 378, 469–471. (b) Yoshizawa, M.; Fujita, M.
Pure Appl. Chem. 2005, 77, 1107–1112. (c) Murase, T.; Fujita, M. Chem.
Rec. 2010, 10, 342–347.
(8) X-ray data for 1⊃3 have been deposited with the Cambridge
Crystallographic Data Centre as entry CCDC-846614.
(9) The higher yield of 7 than 6 is attributable to the larger amount of
guest 3 in the interstitial pores than in the cages. It is also possible for
encapsulated guest 3 to slop out of the cage into the interstitial pores
during the reaction.
(10) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int.
Ed. 2009, 48, 3418–3438.
19693
dx.doi.org/10.1021/ja209290t |J. Am. Chem. Soc. 2011, 133, 19691–19693