ACS Medicinal Chemistry Letters
Letter
clearance; cLog P, calculated logarithm of octanol/water
partition coefficient; Cplasma, total compound concentration in
plasma; DMSO, dimethyl sulfoxide; EC50, molar concentration
that produces half maximal response; F, bioavailability; HBTU,
O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluor-
ophosphate; HPBCD, hyroxypropyl β-cyclodextrin; HPMC,
hydroxypropyl methylcellulose; iv, intravenous; LLC-PK1,
porcine proximal tubule cell line; MRT, mean residence time;
MSA, methanesulfonic acid; Papp, apparent permeability; Vss,
volume of distribution in steady state
Figure 2. After a single oral dose, 22 reduced blood lymphocyte
counts in female Lewis rats 24 h postdose (N = 3/group; bars
REFERENCES
■
(1) Hannun, Y. A.; Obeid, L. M. Principles of bioactive lipid
signaling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 2008, 9,
139−150.
(2) Rosen, H.; Gonzalez-Cabrera, P. J.; Sanna, M. G.; Brown, S.
Sphingosine-1-phosphate receptor signaling. Annu. Rev. Biochem. 2009,
78, 743−768.
represent average blood lymphocyte counts
SE; circles represent
average plasma concentration SE; *P < 0.05 vs vehicle by ANOVA/
Dunnett's multiple comparsion test). Compound was administered in
20% captisol/1% HPMC/1% pluronic F68, pH 2, with MSA.
In summary, a polar headgroup was used to improve the
physicochemical and pharmacokinetic parameters of a series of
S1P1 agonists without detrimentally affecting the pharmaco-
logical profile. Three positions of the quinolinone scaffold were
examined for appending the polar headgroup. The 7-position
was found to be optimal for S1P1 agonist activity with limited
S1P3 activity. Analogues that contained a hydroxyl-based polar
headgroup improved the solubility in SIF relative to 6 and
lowered circulating blood lymphocytes in vivo. Analogue 22
lowered circulating lymphocytes when measured at 24 h after
oral doses of 1 and 3 mg/kg. In rats, 22 achieved a dose-
proportional increase in exposure when dosed at 2 and 100
mg/kg, thus providing a significant advantage over 6. The
favorable in vitro and in vivo profile of 22 supported selection
of this molecule for further preclinical development.
(3) Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-
phosphate in immunity. Nat. Rev. Immunol. 2011, 11, 403−415.
(4) Mandala, S.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie, J.;
Milligan, J.; Thornton, R.; Shei, G.; Card, D.; Keohane, C.; Rosenbach,
M.; Hale, J.; Lynch, C. L.; Rupprecht, K.; Parsons, W.; Rosen, H.
Alteration of lymphocyte trafficking by sphingosine-1-phosphate
receptor agonists. Science 2002, 296, 346−349.
(5) Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens, S.;
Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C.
A.; Zollinger, M.; Lynch, K. R. The immune modulator FTY720
targets sphingosine-1-phosphate receptors. J. Biol. Chem. 2002, 277,
21453−21457.
(6) Bolli, M. H.; Lescop, C.; Nayler, O. Synthetic Sphingosine 1-
Phosphate Receptor ModulatorsOpportunities and Potential
Pitfalls. Curr. Top. Med. Chem. 2011, 11, 726−757.
(7) Buzard, D. J.; Thatte, J.; Lerner, M.; Edwards, J.; Jones, R. M.
Recent progress in the development of selective S1P1 receptor agonists
for the treatment of inflammatory and autoimmune disorders. Expert
Opin. Ther. Patents 2008, 18, 1141−1159.
(8) Cee, V. J.; Frohn, M.; Lanman, B. A.; Golden, J.; Muller, K.;
Neira, S.; Pickrell, A.; Arnett, H.; Buys, J.; Gore, A.; Fiorino, M.;
Horner, M.; Itano, A.; Lee, M. R.; McElvain, M.; Middleton, S.;
Schrag, M.; Rivenzon-Segal, D.; Vargas, H. M.; Xu, H.; Xu, Y.; Zhang,
ASSOCIATED CONTENT
* Supporting Information
■
S
Statistical analysis for in vitro data in Table 1, experimental
procedures and characterization data for 8−22, PK data for 22,
and experimental details for in vitro and in vivo assays. This
material is available free of charge via the Internet at http://
X.; Siu, J.; Wong, M.; Burli, R. W. Discovery of AMG 369, a
̈
thiazolo[5,4-b]pyridine agonist of S1P1 and S1P5. ACS Med. Chem.
Lett. 2011, 2, 107−112.
AUTHOR INFORMATION
Corresponding Author
*Tel: 805-313-5564. Fax: 805-480-1337. E-mail: pharring@
(9) Pennington, L. D.; Sham, K. K. C.; Pickrell, A. J.; Harrington, P.
E.; Frohn, M. J.; Lanman, B. A.; Reed, A. B.; Croghan, M. D.; Lee, M.
R.; Xu, H.; McElvain, M.; Xu, Y.; Zhang, X.; Fiorino, M.; Horner, M.;
Morrison, H. G.; Arnett, H. A.; Fotsch, C.; Wong, M.; Cee, V. J. 4-
M e t h o x y - N - [ 2 - ( t r i f l u o r o m e t h y l ) b i p h e n y l - 4 -
ylcarbamoyl]nicotinamide: A Potent and Selective Agonist of S1P1.
ACS Med. Chem. Lett. 2011, 2, 752−757.
■
Notes
The authors declare no competing financial interest.
(10) Oo, M. L.; Thangada, S.; Wu, M.-T.; Liu, C. H.; Macdonald, T.
L.; Lynch, K. R.; Lin, C.-Y.; Hla, T. Immunosuppressive and
Antiangiogenic Sphingosine 1-Phosphate Receptor-1 Agonists Induce
Ubiquitinylation and Proteasomal Degradation of the Receptor. J. Biol.
Chem. 2007, 282, 9082−9089.
(11) Chiba, K.; Yanagawa, Y.; Masubuchi, Y.; Kataoka, H.;
Kawaguchi, T.; Ohtsuki, M.; Hoshino, Y. FTY720, a Novel
Immunosuppressant, Induces Sequestration of Circulating Mature
Lymphocytes by Acceleration of Lymphocyte Homing in Rats. I.
FTY720 Selectively Decreases the Number of Circulating Mature
Lymphocytes by Acceleration of Lymphocyte Homing. J. Immunol.
1998, 160, 5037−5044.
(12) Kataoka, H.; Sugahara, K.; Shimano, K.; Teshima, K.; Koyama,
M.; Fukunari, A.; Chiba, K. FTY720, Sphingosine 1-Phosphate
Receptor Modulator, Ameliorates Experimental Autoimmune
Encephalomyelitis by Inhibition of T Cell Infiltration. Cell. Mol.
Immunol. 2005, 2, 439−448.
ACKNOWLEDGMENTS
■
We thank Ronya Shatila and Elizabeth Tominey (Amgen) for
in vivo pharmacokinetic studies and Laura Scott (Amgen) for
executing the HTS campaign that identified the quinolinone
series. All live animal studies were conducted in an AAALAC
accredited facility, and husbandry procedures met all of the
recommendations of the Guide for the Care and Use of
Laboratory Animals. All work using research animals was
conducted under Institutional Animal Care and Use
Committee (IACUC) approved protocols.
ABBREVIATIONS
AUC, area under the plasma concentration−time curve; CHO,
Chinese hamster ovary; CL, clearance; CLint, intrinsic
■
77
dx.doi.org/10.1021/ml200252b | ACS Med. Chem. Lett. 2012, 3, 74−78