R. Wang et al. / Tetrahedron Letters 53 (2012) 320–324
323
Kudernac, T.; van Wees, B. J.; Feringa, B. L.; Blom, P. W. M.; de Boer, B. Adv.
Mater. 2008, 20, 1467–1473; (f) Li, Z. X.; Liao, L. Y.; Sun, W.; Xu, C. H.; Zhang, C.;
Fang, C. J.; Yan, C. H. J. Phys. Chem. C. 2008, 112, 5190–5196; (g) Zhang, Z.; Liu,
X.; Li, Z.; Chen, Z.; Zhao, F.; Zhang, F.; Tung, C. H. Adv. Funct. Mater. 2008, 18,
302–307.
2000
1500
1000
500
0
2. (a) Irie, M. Chem. Rev. 2000, 100, 1685–1716; (b) Kawata, S.; Kawata, Y. Chem.
Rev. 2000, 100, 1777–1788; (c) Tian, H.; Yang, S. J. Chem. Soc. Rev. 2004, 33, 85–
97.
3. (a) Irie, M.; Lifka, T.; Uchida, K.; Kobatake, S.; Shindo, Y. Chem. Commun. 1999,
747–750; (b) Kobatake, S.; Shibata, K.; Uchida, K.; Irie, M. J. Am. Chem. Soc. 2000,
122, 12135–12141; (c) Nakayama, Y.; Hayashi, K.; Irie, M. Bull Chem. Soc. Jpn.
1991, 64, 789–795; (d) Gilat, S. L.; Kawai, S. H.; Lehn, J. M. Chem. Eur. J. 1995, 1,
275–284; (e) Chen, Y.; Zeng, D. X.; Xie, N.; Dang, Y. Z. J. Org. Chem. 2004, 70,
5001–5005; (f) Pu, S. Z.; Zhang, F. S.; Xu, J. K.; Shen, L.; Xiao, Q.; Chen, B. Mater.
Lett. 2006, 60, 485–489.
4. (a) Norsten, T. B.; Branda, N. R. J. Am. Chem. Soc. 2001, 123, 1784–1785; (b)
Giordano, L.; Jovin, T. M.; Irie, M.; Jares-Erijman, E. A. J. Am. Chem. Soc. 2002,
124, 7481–7489; (c) Liddell, P. A.; Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D. J.
Am. Chem. Soc. 2002, 124, 7668–7669; (d) Yamaguchi, T.; Irie, M. J. Org. Chem.
2005, 70, 10323–10328; (e) Tsivgoulis, G. M.; Lehn, J. M. Chem. Eur. J. 1996, 2,
1399–1406; (f) Pu, S. Z.; Yang, T. S.; Xu, J. K.; Chen, B. Tetrahedron Lett. 2006, 47,
6473–6477; (g) Fan, C. B.; Pu, S. Z.; Liu, G.; Yang, T. S. J.Photochem. Photobiol. A
2008, 194, 333–343; (h) Pu, S. Z.; Yan, L. S.; Wen, Z. D.; Liu, G.; Shen, L.
J.Photochem. Photobiol. A 2008, 196, 84–93; (i) Pu, S. Z.; Zheng, C. D.; Le, Z. G.;
Liu, G.; Fan, C. B. Tetrahedron 2008, 64, 2576–2585; (j) Pu, S. Z.; Fan, C. B.; Miao,
W. J.; Liu, G. Dyes Pigm. 2009, 84, 25–35.
Vis
UV
350
400
450
Wavelength (nm)
500
550
Figure 4. Emission intensity changes of diarylethene 1 in hexane (5.0 Â 10À5 mol/
L) by photoirradiation at rt when excited at 290 nm.
1 was quenched to ca. 49%. Back irradiation of the appropriate
wavelength of visible light regenerated the open-ring isomer 1o
and duplicated the original emission spectra. As with diarylethene
1, diarylethenes 2 and 3 also exhibited the similar fluorescent
switching properties upon photoirradiation. In the photostationary
state, their emission intensities were quenched to ca. 67% for 2 and
64% for 3. The result shows that diarylethene 1 exhibits a more
marked change in fluorescence upon photocyclization than 2 and
3 because of its higher photoconversion efficiency. Upon irradia-
tion with appropriate wavelength visible light, their open-ring iso-
mers were regenerated and the original emission intensities were
recovered. Compared with diarylethenes bearing two thiophene
moieties,4g,20 the fluorescent modulation efficiencies of diaryleth-
enes 1–3 were significantly decreased in solution. One reason is
the lower photoconversion efficiency resulted from the relatively
high aromatic stabilization energy of the six-membered aryl back-
bone.2a,7 The other reason for the lower fluorescent change induced
by photoirradiation may be attributed to the existence of parallel
conformations of 1o, 2o, and 3o in the photostationary state.20,21
In conclusion, three new photochromic diarylethenes based on
the unsymmetrical six-membered aryl backbone have been devel-
oped and their properties have been investigated. The new photo-
chromic system showed evident photochromism and acted as a
remarkable fluorescent switch in solution at room temperature.
It has been demonstrated that the categories of six-membered aryl
units and substituents have a significant effect on the properties of
these diarylethene derivatives. The results of this work may be
useful for new strategy in exploring photochromic diarylethenes
based on different six-membered aryl units.
5. (a) Goto, K. IEICE Trans. Commun. 1999, E82-B, 1180–1187.; (b) Mitsuhashi, Y.
Jpn. J. Appl. Phys. 1998, 37, 2079–2083; (c) Tsujioka, T.; Kume, M.; Irie, M. Jpn. J.
Appl. Phys. 1996, 35, 4353–4360.
6. Sun, F.; Zhang, F. S.; Guo, H. B.; Zhou, X. H.; Wang, R. J.; Zhao, F. Q. Tetrahedron
2003, 59, 7615–7620.
7. Uchida, K.; Nakamura, S.; Irie, M. Res. Chem. Intermed. 1995, 21, 861–876.
8. (a) Takeshita, M.; Ogawa, O.; Miyata, K.; Yamato, T. J. Phys. Org. Chem. 2003, 16,
148–151; (b) Liu, X. D.; Tong, Q. X.; Shi, M.; Zhang, F. S. Sci. China Ser. B: Chem.
2006, 49, 517–521.
9. Wang, R. J.; Pu, S. Z.; Liu, G.; Liu, W. J.; Xia, H. Y. Tetrahedron Lett. 2011, 52,
3306–3310.
10. Data for 1o: mp 79–80 °C; Calcd for C23H16F6O (%): Calcd C, 65.41; H, 3.82.
Found C, 65.46; H, 3.79; 1H NMR (400 MHz, CDCl3, ppm): d 2.31(s, 3H, ÀCH3),
3.36 (s, 3H, ÀCH3), 6.66 (d, 1H, benzeneÀH), 6.80 (t, 1H, benzeneÀH, J = 8.0 Hz),
7.18 (s, 1H, benzeneÀH, J = 8.0 Hz), 7.24 (t, 2H, naphthaleneÀH, J = 8.0 Hz), 7.36
(t, 1H, benzeneÀH, J = 8.0 Hz), 7.43 (t, 1H, naphthaleneÀH, J = 8.0 Hz), 7.76 (m,
3H, naphthaleneÀH, J = 8.0 Hz); 13C NMR (100 MHz, CDCl3, TMS): d = 20.16,
54.70, 110.92, 116.85, 120.24, 123.71, 125.26, 125.87, 126.24, 127.39, 128.33,
129.47, 129.93, 131.66, 131.97, 135.25, 142.68, 157.28; IR (KBr, m
, cmÀ1): 517,
588, 750, 771, 817, 848, 863, 875, 981, 1021, 1090, 1128, 1193, 1265, 1337,
1461, 1498, 1602. Data for 2o: mp 86–87 °C; C23H16F6 (%):Calcd C, 67.98; H,
3.97. Found C, 67.92; H, 3.94; 1H NMR (400 MHz, CDCl3, TMS): d 2.22 (s, 3H, –
CH3), 2.44 (s, 3H, –CH3), 7.02 (m, 2H, benzene–H, J = 8.0 Hz), 7.11 (m, 1H,
benzene–H, J = 8.0 Hz), 7.14 (m, 1H, naphthalene–H, J = 8.0 Hz), 7.25 (t, 1H,
benzene–H, J = 8.0 Hz), 7.44 (t, 1H, naphthalene–H, J = 8.0 Hz), 7.52 (t, 1H,
naphthalene–H, J = 8.0 Hz), 7.75 (t, 3H, naphthalene–H, J = 8.0 Hz); 13C NMR
(100 MHz, CDCl3, TMS): d = 20.35, 20.86, 122.61, 125.28, 125.44, 125.52,
126.64, 126.84, 128.21, 128.35, 129.62, 129.84, 130.56, 131.71, 131.78, 135.47,
136.91; IR (KBr, m
, cmÀ1): 462, 495, 535, 572, 744, 783, 813, 838, 857, 986,
1056, 1095, 1110, 1132, 1192, 1274, 1344, 1400, 1453, 1511, 1637. Data for 3o:
M.p. 131–132 °C; Calcd for C22H15F6N (%): Calcd C, 64.87; H, 3.71. Found C,
64.93; H, 3.95; 1H NMR (400 MHz, CDCl3, ppm): d 2.13 (s, 3H, ÀCH3), 2.50 (s,
3H, ÀCH3), 7.06 (m, 1H, naphthaleneÀH), 7.29 (t, 2H, naphthaleneÀH,
J = 8.0 Hz), 7.42 (t, 1H, pyridineÀH, J = 8.0 Hz), 7.50 (t, 1H, pyridineÀH,
J = 8.0 Hz), 7.77 (d, 3H, naphthaleneÀH, J = 8.0 Hz), 8.40 (s, 1H, pyridineÀH,
J = 8.0 Hz); 13C NMR (100 MHz, CDCl3, TMS): d = 18.71, 20.98, 122.26, 124.01,
125.40, 125.47, 126.58, 128.07, 128.55, 129.91, 131.35, 131.57, 133.25, 136.50,
138.15, 146.48, 147.05; IR (KBr, m
, cmÀ1): 509, 536, 571, 586, 732, 753, 788,
816, 850, 865, 880, 984, 1054, 1136, 1191, 1271, 1338, 1450, 1573.
11. Li, Z. X.; Liao, L. Y.; Sun, W.; Xu, C. H.; Zhang, C.; Fang, C. J.; Yan, C. H. J. Phys.
Chem. C 2008, 112, 5190–5196.
12. Irie, M.; Sakemura, K.; Okinaka, M.; Uchida, K. J. Org. Chem. 1995, 60, 8305–
8309.
13. (a) Yumoto, K.; Irie, M.; Matsuda, K. Org. Lett. 2008, 10, 2051–2054; (b) Liu, H.
H.; Chen, Y. J. Mater. Chem. 2009, 19, 706–709.
14. (a) Pu, S. Z.; Yan, P. J.; Liu, G.; Miao, W. J.; Liu, W. J. Tetrahedron Lett. 2011, 52,
143–147; (b) Pu, S. Z.; Fan, C. B.; Miao, W. J.; Liu, G. Tetrahedron 2008, 64, 9464–
9470.
15. Higashiguchi, K.; Matsuda, K.; Yamada, T.; Kawai, T.; Irie, M. Chem. Lett. 2000,
1358–1359.
Acknowledgments
This work was supported by the Program for the NSFC of China
(21162011, 20962008), the Project of Jiangxi Academic and Tech-
nological leader (2009DD00100), and the Science Funds of the Edu-
cation Office of Jiangxi, China (GJJ09646, GJJ11026).
Supplementary data
Supplementary data associated with this article can be found, in
16. Uchida, K.; Matsuoka, T.; Sayo, K.; Iwamoto, M.; Hayashi, S.; Irie, M. Chem. Lett.
1999, 835–836.
17. (a) Gorodetsky, B.; Samachetty, H. D.; Donkers, R. L.; Workentin, M. S.; Branda,
N. R. Angew. Chem., Int. Ed. 2004, 43, 2812–2815; (b) Zhang, J. J.; Tan, W. J.;
Meng, X. L.; Tian, H. J. Mater. Chem. 2009, 19, 5726–5729; (c) Fukaminato, T.;
Sasaki, T.; Kawai, T.; Tamai, N.; Irie, M. J. Am. Chem. Soc. 2004, 126, 14843–
14849; (d) Xiao, S. Z.; Zhou, Y. F.; Zhao, Q.; Li, F. Y.; Huang, C. H. Tetrahedron
2006, 62, 10072–10078; (e) Suzuki, Y.; Yokoyama, K. J. Am. Chem. Soc. 2005,
127, 17799–17802; (f) Cui, S. Q.; Pu, S. Z.; Liu, W. J.; Liu, G. Dyes Pigm. 2011, 91,
435–441.
References and notes
1. (a) Wilson, A. E. J. Phys. Technol. 1984, 15, 232–238; (b) Raymo, F. M.; Tomasulo,
M. Chem. Soc. Rev. 2005, 34, 327–336; (c) Tian, H.; Feng, L. Y. J. Mater. Chem.
2008, 18, 1617–1622; (d) Pu, S. Z.; Yang, T. S.; Yao, B. L.; Wang, Y.; Lei, M.; Xu, J.
K. Mater. Lett. 2007, 61, 855–859; (e) Kronemeijer, A. J.; Akkerman, H. B.;