Journal of the American Chemical Society
COMMUNICATION
Scheme 7. Transformations of Oxetenes
(2) (a) Middleton, W. J. J. Org. Chem. 1965, 30, 1307. (b) Friedrich,
L. E.; Schuster, G. B. J. Am. Chem. Soc. 1969, 91, 7204. (c) England, D. C.;
Krespau, C. G. J. Org. Chem. 1970, 35, 3312. (d) Friedrich, L. E.; Schuster,
G. B. J. Am. Chem. Soc. 1971, 93, 4602. (e) Friedrich, L. E.; Bower, J. D.
J.Am. Chem. Soc. 1973, 95, 6869. (f) Kobayashi, Y.; Hanzawa, Y.; Miyashita,
W.; Kashiwagi, T.; Nakano, T.; Kumadaki, I. J. Am. Chem. Soc. 1979, 101,
6445. (g) Martino, P. C.; Shevlin, P. B. J. Am. Chem. Soc. 1980, 102, 5429.
(h) Friedrich, L. E.; Lam, P. Y.-S. J. Org. Chem. 1981, 46, 306.
(3) (a) B€uchi, G.; Kofron, J. T.; Koller, E.; Rosenthal, D. J. Am. Chem.
Soc. 1956, 78, 876. (b) Miyamoto, T.; Shigemitsu, Y.; Odaira, Y. J. Chem.
Soc., Chem. Commun. 1969, 1410. (c)Bos, H. J. T.; Boleij, J.S.M.Recl. Trav.
Chim. Pays-Bas 1969, 88, 465. (d) Mosterd, A.; Matser, H. J.; Bos, H. J. T.
Tetrahedron Lett. 1974, 15, 4179. (e) Wang, L.; Zhang, Y.; Hu, H.-Y.; Fun,
H. K.; Xu, J.-H. J. Org. Chem. 2005, 70, 3850. (f) Yu, H.; Li, J.; Kou, Z.; Du,
X.; Wei, Y.; Fun, H.-K.; Xu, J.; Zhang, Y. J. Org. Chem. 2010, 75, 2989.
(4) While the formation of a stable MgBr2 (3 equiv) chelate complex
to prevent the transformation to α,β-unsaturated carbonyl compound is
required, only one example of oxetene synthesis has been reported: Oblin,
M.; Parrain, J.-L.; Rajzmann, M.; Pons, J.-M. Chem. Commun. 1998, 1619.
(5) (a) Vieregge, H.;Bos, H. J. T.;Arens, J. F. Recl. Trav. Chim. Pays-Bas
1959, 78, 664. (b) Vieregge, H.; Schmidt, H. M.; Renema, J.; Bos, H. J. T.;
Arens, J. F. Recl. Trav. Chim. Pays-Bas 1966, 85, 929. (c) Kowalski, C. J.;
Sakdarat, S. J. Org. Chem. 1990, 55, 1977. (d) Hayashi, A.; Yamaguchi, M.;
Hirama, M. Synlett 1995, 195. (e) Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.;
Douglas, C. J.; Xiong, H.; Mulder, J. A. Org. Lett. 1999, 1, 1237. (f) Oblin,
M.; Rajzmann, M.; Pons, J.-M. Tetrahedron 2001, 57, 3099. (g) Rhee, J. U.;
Krische, M. J. Org. Lett. 2005, 7, 2493. (h) Sun, J.; Keller, V. A.;Meyer, S. T.;
Kozmin, S. A. Adv. Synth. Catal. 2010, 352, 839.
(6) (a) Aikawa, K.; Kainuma, S.; Hatano, M.; Mikami, K. Tetrahedron
Lett. 2004, 45, 183. (b) Mikami, K.; Kawakami, Y.; Akiyama, K.; Aikawa,
K. J. Am. Chem. Soc. 2007, 129, 12950. (c) Aikawa, K.; Hioki, Y.; Mikami,
K. J. Am. Chem. Soc. 2009, 131, 13922. (d) Aikawa, K.; Hioki, Y.; Mikami,
K. Chem.—Asian J. 2010, 5, 2346. (e) Aikawa, K.; Mimura, S.; Numata,
Y.; Mikami, K. Eur. J. Org. Chem. 2011, 62. (f) Aikawa, K.; Honda, K.;
Mimura, S.; Mikami, K. Tetrahedron Lett. 2011, 52, 6682. (g) Mikami,
K.; Aikawa, K.; Ishii, A.; Mogi, K.; Ootsuka, T. WO2008078601 A1,
2008. (h) Mikami, K.; Aikawa, K.; Aida, J.; Ishii, A.; Kato, M.; Masuda, T.
WO2010098288 A1, 2010.
(7) Catalytic asymmetric reactions using cationic Pd enolates: (a) Sodeo-
ka, M.; Ohrai, K.; Shibasaki, M. J. Org. Chem. 1995, 60, 2648. (b) Hamashima,
Y.; Sodeoka, M. Chem. Rec. 2004, 4, 231. (c) Umebayashi, N.; Hamashima, Y.;
Hashizume, D.; Sodeoka, M. Angew. Chem., Int. Ed. 2008, 47, 4196.
(8) Recent reviews: (a) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007,
128, 975. (b) Billard, T.; Langlois, B. R. Eur. J. Org. Chem. 2007, 891. (c)
Shibata, N.; Mizuta, S.; Kawai, H. Tetrahedron: Asymmetry 2008,
19, 2633. (d) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (e)
Zheng, Y.; Ma, J.-A. Adv. Synth. Catal. 2010, 352, 2745. (f) Nie, J.; Guo,
H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455. (g) Mikami, K.;
Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1.
(9) Aikawa, K.; Hioki, Y.; Mikami, K. Org. Lett. 2010, 12, 5716.
(10) (a) Shindo, M.; Mori, S. Synlett 2008, 2231. (b) Yoshikawa, T.;
Mori, S.; Shindo, M. J. Am. Chem. Soc. 2009, 131, 2092. (c) Shindoh, N.;
Kitaura, K.; Takemoto, Y.; Takasu, K. J. Am. Chem. Soc. 2011, 133, 8470.
(11) See the Supporting Information.
(12) (a) Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc. 2006,
128, 4586. (b) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775.
(c) Schotes, C.; Mezzetti, A. Angew. Chem., Int. Ed. 2011, 50, 3072.
(13) The mechanisms of oxetene formation and electrocyclic ring-
opening reactions are now being extensively examined computationally.
We will report the intriguing mechanisms after further refinement.
(14) The trifluoromethyl group retards the electrocyclic ring-
opening reaction of cyclobutene compounds better than other sub-
stituents. For a review, see: Dolbier, W. R., Jr.; Koroniak, H.; Houk,
K. N.; Sheu, C. Acc. Chem. Res. 1996, 29, 471.
Detailed studies of the mechanism and generality of the electro-
cyclic ring-opening transformation are ongoing in our laboratory.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, com-
b
pound characterization data, and CIF files. This material is avai-
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank Takasago International Co. for providing the BINAP
and DTBM-SEGPHOS ligands and Dr. K. Yoza (Bruker AXS
K.K.) for X-ray analysis. This work was supported in part by the
grant program “Collaborative Development of Innovative Seeds”
from the Japan Science and Technology Agency (JST).
’ REFERENCES
(1) Oxetanes: (a) Wuitschik, G.; Rogers-Evans, M.; M€uller, K.;
Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M.
Angew. Chem., Int. Ed. 2006, 45, 7736. (b) Burkhard, J. A.; Wuitschik, G.;
Rogers-Evans, M.; M€uller, K.; Carreira, E. M. Angew. Chem., Int. Ed.
2010, 49, 9052. (c) Mikami, K.; Aikawa, K.; Aida, J. Synlett 2011, 2719.
Azetidines: (d) Burkhard, J.; Carreira, E. M. Org. Lett. 2008, 10, 3525.
(e) Burkhard, J. A.; Wagner, B.; Fischer, H.; Schuler, F.; M€uller, K.;
Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 3524.
(15) Perfluoroalkyl effect: Lemal, D. M.; Dunlap, L. H., Jr. J. Am.
Chem. Soc. 1972, 94, 6562.
20095
dx.doi.org/10.1021/ja2085299 |J. Am. Chem. Soc. 2011, 133, 20092–20095