Table 3 Scope of the Michael addition of nitroalkanes to nitroalkenesa
Yieldb
R2 t/h Product (%)
drc
Entry R1
(syn/anti) eed,e (%)
1
2
3
4
5
6
7
8
9
C6H5
Me 48 3a
Me 48 3b
Me 48 3c
Me 48 3d
Me 48 3e
Me 60 3f
94
98
95
83
91
91
90
88
71
95 : 5
94 : 6
92 : 8
88 : 12
94 : 6
91 : 9
94 : 6
94 : 6
88 : 12
97
96
96
95
96
96
97
97
96
4-FC6H4
4-ClC6H4
2-ClC6H4
4-BrC6H4
4-MeC6H4
4-MeOC6H4 Me 60 3g
2-MeOC6H4 Me 60 3h
3,4-
(MeO)2C6H3
1-Naphthyl
2-Furanyl
2-Thienyl
i-Propyl
C6H5
4-ClC6H4
2-ClC6H4
Scheme 2 The gram-scale preparation and transformation of 3a.
We are grateful for financial support from the National Natural
Science Foundation of China (Grant No. 21072020), the Science
and Technology Innovation Program of Beijing Institute of
Technology (Grant Nos. 2011CX01008 and 2011CX03037) and
the Development Program for Distinguished Young and Middle-
aged Teachers of Beijing Institute of Technology.
Me 60 3i
10
11
12
13
14
15
16
17
18
Me 60 3j
Me 60 3k
Me 60 3l
Me 96 3m
Et 60 3n
Et 60 3o
Et 60 3p
79
64
63
16
79
88
72
64
58
92 : 8
95
96
95
80
92
96
96
97
96
89 : 11
79 : 21
67 : 33
88 : 12
89 : 11
81 : 19
92 : 8
Notes and references
1 (a) P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis,
Pergamon, Oxford, 1992; (b) J. L. Vicario, D. Badıa, L. Carrillo and
E. Reyes, Organocatalytic Enantioselective Conjugate Additions, RSC
Publishing, Oxford, 2010.
4-MeOC6H4 Et 72 3q
2-MeOC6H4 Et 72 3r
90 : 10
2 For selected reviews of asymmetric Michael additions, see:
(a) S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 1701; (b) J. Christoffers,
G. Koripelly, A. Rosiak and M. Rossle, Synthesis, 2007, 1279;
(c) S. Sulzer-Mosse and A. Alexakis, Chem. Commun., 2007, 3123;
(d) J. L. Vicario, D. Badıa and L. Carrillo, Synthesis, 2007, 2065;
(e) D. Almasi, D. A. Alonso and C. Najera, Tetrahedron: Asymmetry,
2007, 18, 299.
a
Reactions were carried out with nitroalkene (0.2 mmol) and nitro-
b
alkane (1.0 mmol) in CH2Cl2 (0.5 mL). Isolated yields after column
c
chromatography purification. Determined by chiral HPLC analysis.
d
Enantiomeric excess for the major syn-diastereomer was determined
by chiral HPLC analysis. e The configuration of the major syn-diastereomer
was assigned to be (S,S) by comparison of the optical rotation with
literature data.6,7
3 R. Ballini, G. Bosica, D. Fiorini, A. Palmieri and M. Petrini,
Chem. Rev., 2005, 105, 933.
4 O. M. Berner, L. Tedeschi and D. Enders, Eur. J. Org. Chem.,
2002, 1877.
5 R. Ballini, A. Palmieria and P. Righi, Tetrahedron, 2007, 63, 12099.
6 S.-F. Lu, D.-M. Du, J. Xu and S.-W. Zhang, J. Am. Chem. Soc.,
2006, 128, 7418.
7 (a) J. Wang, H. Li, L. S. Zu, W. Jiang and W. Wang, Adv. Synth. Catal.,
2006, 348, 2047; (b) X. Yang, X. Zhou, L. L. Lin, L. Chang, X. H. Liu
and X. M. Feng, Angew. Chem., Int. Ed., 2008, 47, 7049; (c) C. Rabalakos
and W. D. Wulff, J. Am. Chem. Soc., 2008, 130, 13524; (d) X. Q. Dong,
H. L. Teng and C. J. Wang, Org. Lett., 2009, 11, 1265.
8 T. Ooi, S. Takada, K. Doda and K. Maruoka, Angew. Chem., Int.
Ed., 2006, 45, 7606.
Scheme 1 Further investigation of substrate scope.
9 For selected reviews, see: (a) P. R. Schreiner, Chem. Soc. Rev.,
2003, 32, 289; (b) J. Seayad and B. List, Org. Biomol. Chem., 2005,
3, 719; (c) S. J. Connon, Chem.–Eur. J., 2006, 12, 5418;
(d) M. S. Taylor and E. N. Jacobsen, Angew. Chem., Int. Ed.,
2006, 45, 1520; (e) A. G. Doyle and E. N. Jacobsen, Chem. Rev.,
2007, 107, 5713; (f) T. Akiyama, Chem. Rev., 2007, 107, 5744;
(g) X. Yu and W. Wang, Chem.–Asian J., 2008, 3, 516.
10 For reviews of squaramides, see: (a) R. I. Storer, C. Aciro and
L. H. Jones, Chem. Soc. Rev., 2011, 40, 2330; (b) J. Aleman,
A. Parra, H. Jiang and K. A. Jørgensen, Chem.–Eur. J., 2011, 17, 6890.
11 For recent examples, see: (a) J. P. Malerich, K. Hagihara and
V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416; (b) Y. Zhu,
J. P. Malerich and V. H. Rawal, Angew. Chem., Int. Ed., 2010, 49, 153;
(c) D. Q. Xu, Y.-F. Wang, W. Zhang, S.-P. Luo, A.-G. Zhong, A.-B. Xia
and Z.-Y. Xu, Chem.–Eur. J., 2010, 16, 4177; (d) L. Dai, S.-X. Wang and
F.-E. Chen, Adv. Synth. Catal., 2010, 352, 2137; (e) H. Jiang,
M. W. Paixao, D. Monge and K. A. Jørgensen, J. Am. Chem. Soc.,
2010, 132, 2775; (f) W. Yang and D.-M. Du, Org. Lett., 2010, 12, 5450;
(g) W. Yang and D.-M. Du, Adv. Synth. Catal., 2011, 353, 1241;
(h) Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao and V. H. Rawal, Chem.
Commun., 2010, 46, 3004; (i) H. Konishi, T. Y. Lam, J. P. Malerich and
V. H. Rawal, Org. Lett., 2010, 12, 2028; (j) S. V. Pansare and E. K. Paul,
Chem. Commun., 2011, 47, 1027.
(1.49 g, 10.0 mmol) reacted with nitroethane 2a with 1 mol%
catalyst IX to afford the product 3a in 82% yield with 92 : 8 dr
and 94% ee (99% ee was obtained after a simple crystallization).
The transformation of the 1,3-dinitro compound 3a (2.35 g,
10.5 mmol) to the corresponding chiral cyclic thiourea 8 was also
readily gram-scaled without change in enantioselectivity.
In summary, we have developed a squaramide-catalyzed highly
diastereo- and enantioselective direct Michael addition of nitro-
alkanes to nitroalkenes. This catalytic system with a low catalyst
loading (2 mol%) was very effective to afford the corresponding
Michael adducts in high yields with high diastereoselectivities (up
to 95 : 5 dr) and enantioselectivities (up to 97% ee). This process
provides an easy access to optically active 1,3-dinitro compounds.
Moreover, the gram-scale preparation and transformation of the
1,3-dinitro compounds to chiral cyclic thiourea can be performed
well, demonstrating the synthetic potential of this chiral squara-
mide organocatalytic system. Further studies on asymmetric reac-
tions catalyzed by squaramides are underway in our laboratory.
12 H. S. Rho, S. H. Oh, J. W. Lee, J. Y. Lee, J. Chin and C. E. Song,
Chem. Commun., 2008, 1208.
c
12708 Chem. Commun., 2011, 47, 12706–12708
This journal is The Royal Society of Chemistry 2011