Communications
[7] F. J. Dekker, O. Rocks, N. Vartak, S. Menninger, C. Hedberg, R.
Balamurugan, S. Wetzel, S. Renner, M. Gerauer, B. Schoeler-
mann, M. Rusch, J. W. Kramer, D. Rauh, G. W. Coates, L.
[8] O. Rocks, M. Gerauer, N. Vartak, S. Koch, Z.-P. Huang, M.
Pechlivanis, J. Kuhlmann, L. Brunsveld, A. Chandra, B. Ellinger,
[10] M. Rusch, T. Zimmermann, M. Burger, F. J. Dekker, K. Gçrmer,
G. Triola, P. Janning, T. Bçttcher, S. A. Sieber, I. Vetter, C.
Hedberg, H. Waldmann, Angew. Chem. 2011, DOI: 10.1002/
ange.201102967; Angew. Chem. Int. Ed. 2011, DOI: 10.1002/
anie.201102967.
[11] M. A. Koch, L.-O. Wittenberg, S. Basu, D. A. Jeyaraj, E.
Gourzoulidou, K. Reinecke, A. Odermatt, H. Waldmann,
[14] A. Nçren-Mꢁller, I. Reis-CorrÞa, Jr., H. Prinz, H. Rosenbaum,
K. Saxena, H. J. Schwalbe, D. Vestweber, D. Cagna, S. Schunk,
O. Schwarz, H. Schiewe, H. Waldmann, Proc. Natl. Acad. Sci.
USA 2006, 103, 10606 – 10611.
with palmostatin M caused efficient mislocalization of N-Ras,
with complete unspecific distribution reached one hour after
treatment with the inhibitor. H-Ras enrichment, on the other
hand, was not clearly affected at the plasma membrane on this
timescale, but H-Ras was depleted from the Golgi apparatus
because of the directional influence of the secretory path-
way,[31] as reported before under APT1 inhibition.[7] K-Ras
localization, which does not require the de/reacylation
cycle[32] was completely unaffected by palmostatin M, thus
indicating that palmostatin M exerts a specific effect on the
acylation cycle. The results of the redistribution assays are in
accordance with the phenotypic assay. Compound 38, which
showed poor phenotypic effects on transformed cells,
although highly potent in the biochemical assay, was also
comparably inefficient in the redistribution assay relative to
palmostatin M. Complete unspecific distribution of N-Ras
upon treatment with 38 at 1 mm required more than three
hours, compared to less than one hour for palmostatin M
(Figure 3C).
We have described the development of the APT1
inhibitor palmostatin M based on the principle of substrate
similarity and its characterization in vitro and in cells.
Palmostatin M perturbs the acylation cycle as well as the H-
and N-Ras signaling activity at the level of depalmitoylation,
thereby leading to decreased MAP-kinase signaling and
partial endothelial to mesenchymal phenotypic reversion of
H-Ras-transformed MDCK-F3 cells.
Palmostatin M is several times more active than palmos-
tatin B and, as a consequence of its polar character, has a
pronounced solubility yet retains cell permeability, which will
allow the use of the inhibitor at substantially lower concen-
trations, thereby reducing the potential for unspecific effects.
Notably, for palmostatin B only APT1 has been validated
as cellular target,[7] but for both palmostatin B and M the
possible range of cellular targets relevant to Ras signaling has
not been determined. We describe the identification of these
targets by means of a reactive proteomics approach in the
following manuscript.[10]
[18] H. Sunaga, H. Sugimoto, Y. Nagamachi, S. Yamashita, Biochem.
J. 1995, 308, 551 – 557.
[19] T. Hirano, M. Kishi, H. Sugimoto, R. Taguchi, H. Obinata, N.
Ohshima, K. Tatei, T. Izumi, Biochim. Biophys. Acta Mol. Cell
Biol. Lipids 2009, 1791, 797 – 805.
[20] G. Siegel, G. Obernosterer, R. Fiore, M. Oehmen, S. Bicker, M.
Christensen, S. Khudayberdiev, P. F. Leuschner, C. J. L. Busch,
C. Kane, K. Hubel, F. J. Dekker, C. Hedberg, B. Rengarajan, C.
Drepper, H. Waldmann, S. Kauppinen, M. E. Greenberg, A.
Draguhn, M. Rehmsmeier, J. Martinez, G. M. Schratt, Nat. Cell
[22] Y. Shanado, M. Kometani, H. Uchiyama, S. Koizumi, N. Teno,
[24] Results of previous screening efforts of APT1 inhibition by b-
lactones revealed the importance of a lipophilic binding motif
for APT1 inhibition. For examples of compound libraries
consisting of b-lactones without lipophilic substituents that did
not provide any inhibition, see Z. Wang, C. Gu, T. Colby, T.
Shindo, R. Balamurugan, H. Waldmann, M. Kaiser, R. A. L.
discussion in reference [7].
[25] Y. Devedjiev, Z. Dauter, S. R. Kuznetsov, T. L. Z. Jones, Z. S.
[27] I.-M. Karaguni, P. Herter, P. Debruyne, S. Chtarbova, A.
Kasprzynski, U. Herbrand, M. R. Ahmadian, K.-H. Glusen-
kamp, G. Winde, M. Mareel, T. Moroy, O. Muller, Cancer Res.
2002, 62, 1718 – 1723.
[28] O. Mꢁller, E. Gourzoulidou, M. Carpintero, I.-M. Karaguni, A.
Langerak, C. Herrmann, T. Moeroey, L. Klein-Hitpass, H.
Received: April 29, 2011
Revised: August 8, 2011
Published online: September 9, 2011
Keywords: acyl protein thioesterase · inhibitors · ras protein ·
.
signal transduction
4383; Angew. Chem. Int. Ed. 2000, 39, 4192 – 4214.
[3] P. G. Dangle, B. Zaharieva, H. Jia, K. S. Pokar, Recent Pat. Anti-
Cancer Drug Discovery 2009, 4, 125 – 136.
[4] M. H. Gelb, L. Brunsveld, C. A. Hrycyna, S. Michaelis, F.
[5] L. Brunsveld, J. Kuhlmann, K. Alexandrov, A. Wittinghofer,
[6] O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M.
Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer,
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2011, 50, 9832 –9837