Fig. 8 Emission spectra of solutions containing 10 mM 1 in 50 mM
sodium phosphate buffer (pH = 7.0) and 0.1 N HCl at 25 ◦C. Excitation
wavelength was 330 nm.
Fig. 6 Chemical structures and emission spectra of 10 mM (a) 2 and (b)
3 in the presence and absence of 100 mM G2 POSS-core dendrimers by
adding 100 mM GTP in water at 25 ◦C. Excitation wavelength was 330 nm.
dendrimer. Although the affinity is lower than those of the
aptamers16 as previously reported, our system is applicable over a
wide pH range and salt concentration. Our data indicate that the
dendrimer complex with the naphthyridine ligand can selectively
recognize and capture GTP. Furthermore, in this system, the
POSS-core dendrimer and the ligand molecules interact only via
non-covalent bonds. Therefore, it can be expected that the target
guest molecules can be tuned by replacing the ligand units. This
might be applicable not only to development of new tools for
biosensing but also for modulating the concentrations of targets
in the cells.
To elaborate the influence of the charge on the surface of the
dendrimer, the emission intensity of the complex was compared
in solutions of various pH (Fig. 7). Under alkaline conditions,
the degree of fluorescence quenching was reduced, while the
quenching ability can be maintained under acidic conditions.
These results indicate that the terminal-ammonium groups should
contribute to binding GTP via electrostatic interaction. Under
the extremely acidic conditions in 0.1 N hydrochloric acid, the
fluorescence emission was largely suppressed (Fig. 8, U = 0.13),
and a new peak appeared in the longer wavelength region.
Therefore, the protonation of the naphthyridine moiety induced
by the triphosphate moiety of GTP should hardly be responsible
for the quenching. From the series of data, a recognition model for
guanosine nucleotides by the dendrimer complex can be proposed.
The naphthyridine ligand and G2 POSS-core dendrimer form a
stable complex in which guanosine nucleotides can enter and leave.
GTP should be retained in the complex for a relatively longer time
because of the cooperative interaction via hydrogen bonds with
the naphthyridine ligand and the stronger electrostatic attraction.
Thus, selective capturing of GTP by the dendrimer complex could
be observed.
Notes and references
1 T. Sawada, M. Yoshizawa, S. Sato and M. Fujita, Nat. Chem., 2009, 1,
53.
2 K. D. Westover, D. A. Bushnell and R. D. Kornberg, Cell, 2004, 119,
481.
3 J. H. Liao, C. T. Chen, H. C. Chou, C. C. Cheng, P. T. Chou, J. M. Fang,
Z. Slanina and T. J. Chow, Org. Lett., 2002, 4, 3107; J. M. Fang, S. Selvi,
J. H. Liao, Z. Slanina, C. T. Chen and P. T. Chou, J. Am. Chem. Soc.,
2004, 126, 3559; Z. Xu, K. Morita, Y. Sato, Q. Dai, S. Nishizawa and
N. Teramae, Chem. Commun., 2009, 6445; Y. Sato, S. Nishizawa, K.
Yoshimoto, T. Seino, T. Ichizawa, K. Morita and N. Teramae, Nucleic
Acids Res., 2009, 37, 1411.
4 K. Nakatani, S. Hagihara, Y. Goto, A. Kobori, M. Hagihara, G.
Hayashi, M. Kyo, M. Nomura, M. Mishima and C. Kojima, Nat. Chem.
Biol., 2005, 1, 39.
5 K. Nakatani, S. Sando and I. Saito, Nat. Biotechnol., 2001, 19, 51; K.
Nakatani, S. Sando, H. Kumasawa, J. Kikuchi and I. Saito, J. Am.
Chem. Soc., 2001, 123, 12650; T. Peng, C. Dohno and K. Nakatani,
Angew. Chem., Int. Ed., 2006, 45, 5623.
6 P. J. Cywinski, A. J. Moro, T. Ritschel, N. Hildebrandt and H. G.
Lo¨hmannsro¨ben, Anal. Bioanal. Chem., 2011, 399, 1215.
7 S. Matsumoto, S. Yamaguchi, S. Ueno, H. Komatsu, M. Ikeda, K.
Ishizuka, Y. Iko, K. V. Tabata, H. Aoki, S. Ito, H. Noji and I. Hamachi,
Chem.–Eur. J., 2008, 14, 3977; S. Matsumoto, S. Yamaguchi, A. Wada,
T. Matsui, M. Ikeda and I. Hamachi, Chem. Commun., 2008, 1545;
H. Komatsu, S. Matsumoto, S. Tamaru, K. Kaneko, M. Ikeda and I.
Hamachi, J. Am. Chem. Soc., 2009, 131, 5580; J. Boekhoven, A. M.
Brizard, K. N. K. Kowlgi, G. J. M. Koper, R. Eelkema and J. H. van
Esch, Angew. Chem., Int. Ed., 2010, 49, 4825.
8 N. Morimoto, N. Ogino, T. Narita and K. Akiyoshi, J. Biotechnol.,
2009, 140, 246; A. Morimoto, X.-P. Qiu, F. M. Winnik and K. Akiyoshi,
Macromolecules, 2008, 41, 5985; N. Morimoto, T. Ohki, K. Kurita and
K. Akiyoshi, Macromol. Rapid Commun., 2008, 29, 672.
9 P.-A. Jaffre´s and R. E. Morris, J. Chem. Soc., Dalton Trans., 1998,
2767; F. J. Feher and K. D. Wyndham, Chem. Commun., 1998, 323; F.
J. Feher, K. D. Wyndham, D. Soulivong and F. Nguyen, J. Chem. Soc.,
Dalton Trans., 1999, 1491; X. Zhang, K. J. Haxton, L. Ropartz, D. J.
Cole-Hamilton and R. E. Morris, J. Chem. Soc., Dalton Trans., 2001,
3261.
Fig. 7 The influence of pH on the quantum yield of emission from
solutions containing 10 mM 1, 100 mM G2 POSS-core dendrimer, and
100 mM GTP in 50 mM sodium phosphate buffer at 25 ◦C. Excitation
wavelength was 330 nm.
Conclusions
In conclusion, we present that the binding affinity of the naph-
thyridine ligand with GTP can be enhanced by the POSS-core
94 | Org. Biomol. Chem., 2012, 10, 90–95
This journal is
The Royal Society of Chemistry 2012
©