Journal of the American Chemical Society
Communication
(10) Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y.
Chem. Rev. 2009, 109, 5974.
strong resonance-enhanced bands characteristic of polydiace-
tylenes.12 The Raman spectrum of the fully polymerized
crystals of 2 showed these two bands, at 1484 and 2095 cm−1,
at a much greater intensity.
(11) Hartgerink, J. D.; Clark, T. D.; Ghadiri, M. R. Chem.Eur. J.
1998, 4, 1367.
(12) Xu, Y. W.; Smith, M. D.; Geer, M. F.; Pellechia, P. J.; Brown, J.
C.; Wibowo, A. C.; Shimizu, L. S. J. Am. Chem. Soc. 2010, 132, 5334.
(13) Baldwin, K. P.; Matzger, A. J.; Scheiman, D. A.; Tessier, C. A.;
Vollhardt, K. P. C.; Youngs, W. J. Synlett 1995, 1215.
(14) Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem., Int. Ed. Engl.
1997, 36, 836.
Once the polymerization occurred, we found the crystals to
be totally insoluble in a wide range of standard solvents. One
would expect an isolated tube to be a flexible molecule able to
incorporate solvent or other small molecules within the interior.
Because of the complete lack of solubility, we have not yet been
able to verify this hypothesis. The synthesis of 2 is
straightforward from readily available starting materials, and
more soluble analogues should be possible using similar
synthetic methodology. Soluble analogues should have the
open void space that would increase the potential applicability
of molecular tubes.21
Should one call polymer 2 a synthetic nanotube? We believe
so. The interior is 1 nm across in the long direction, and the
outer dimensions are about 1 nm × 2 nm; the length is
indeterminately long. In an idealized conformation, the tubes
would have a roughly circular cross section of about 1 nm, very
similar to that of a single-walled carbon nanotube.
(15) Suzuki, M.; Comito, A.; Khan, S. I.; Rubin, Y. Org. Lett. 2010,
12, 2346.
(16) Nagasawa, J.; Yoshida, M.; Tamaoki, N. Eur. J. Org. Chem. 2011,
2247.
(17) Wegner, G. Z. Naturforsch., B: J. Chem. Sci. 1969, B 24, 824.
(18) Lauher, J. W.; Fowler, F. W.; Goroff, N. S. Acc. Chem. Res. 2008,
41, 1215.
(19) Li, Z.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 2009, 131,
634.
(20) Rabelais, F. Gargantua and Pantagruel; 1564; Vol. 5.
(21) Dalgarno, S. J.; Thallapally, P. K.; Barbour, L. J.; Atwood, J. L.
Chem. Soc. Rev. 2007, 36, 236.
The significance of this new polymer is that it is the first
example of a structurally characterized tubular addition polymer
and that a general strategy for synthesizing any tubular polymer
has been confirmed. One can imagine that the power of organic
synthesis may lead to similar polymers that can be tailor-
designed for a wide range of applications.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis and characterization details, Raman spectra of 1 and
2, DSC study of 1, color photographs of crystals of 1 and 2,
representations of the molecular conformations of 1, and CIF
files for the two polymorphs of monomer 1 and the structure of
polymer 2. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
We acknowledge the National Science Foundation for their
support of this work (CHE 0911338) and for their support of
the purchase of our X-ray diffractometer (CHE-0840483). We
thank Xiao Wei Li for the DSC measurement.
REFERENCES
■
(1) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002,
297, 787.
(2) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev.
2006, 106, 1105.
(3) Gattuso, G.; Menzer, S.; Nepogodiev, S. A.; Stoddart, J. F.;
Williams, D. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 1451.
(4) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew.
Chem., Int. Ed. 2001, 40, 988.
(5) Pasini, D.; Ricci, M. Curr. Org. Synth. 2007, 4, 59.
(6) Hecht, S.; Khan, A. Angew. Chem., Int. Ed. 2003, 42, 6021.
(7) Yashima, E.; Maeda, K.; Furusho, Y. Acc. Chem. Res. 2008, 41,
1166.
(8) Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.;
Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004,
304, 1481.
(9) Moore, J. S. Acc. Chem. Res. 1997, 30, 402.
145
dx.doi.org/10.1021/ja209792f | J. Am. Chem.Soc. 2012, 134, 142−145