Journal of the American Chemical Society
Page 10 of 12
16) Shields, B. J.; Doyle, A. G. Direct C(sp3)−H Cross Coupling
J. K.; Molander, G. A. Direct αꢀArylation/Heteroarylation of
Enabled by Catalytic Generation of Chlorine Radicals. J. Am.
Chem. Soc. 2016, 138, 12719.
2ꢀTrifluoroboratochromanones via Photoredox/Nickel Dual
Catalysis. Org. Lett. 2017, 19, 436. (d) Huang, H.; Li, X.; Yu,
C.; Zhang, Y.; Mariano, P. S.; Wang, W. VisibleꢀLightꢀ
Promoted Nickelꢀ and OrganicꢀDyeꢀCoꢀCatalyzed Formylaꢀ
tion Reaction of Aryl Halides and Triflates and Vinyl broꢀ
mides with Diethoxyacetic Acid as A Formyl Equivalent.
Angew. Chem. Int. Ed. 2017, 56, 1500.
1
2
3
4
5
6
7
8
17) For selected reviews in visible light photoredox catalysis: (a)
Fabry, D. C.; Rueping, M. Merging Visible Light Photoredox
Catalysis with Metal Catalyzed CꢀH Activations: On the Role
of Oxygen and Superoxide Ions as Oxidants. Acc. Chem. Res.
2016, 49, 1969. (b) Hopkinson, M. N.; TlahuextꢀAca, A.;
Glorius, F. Merging Visible Light Photoredox and Gold Caꢀ
talysis. Acc. Chem. Res. 2016, 49, 2261. (c) Kärkäs, M. D.;
Porco, J. A.; Stephenson, C. R. J. photochemical Approaches
to Complex Chemotypes: Applications in Natural Product ꢀ
synthesis. Chem. Rev., 2016, 116, 9683. (d) Prier, C. K.;
Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoreꢀ
dox Catalysis with Transition Metal Complexes: Applications
in Organic Synthesis. Chem. Rev. 2013, 113, 5322.
18) For the use of bifunctional photocatalysts, see: Ding, W.; Lu,
L.ꢀQ.; Zhou, Q.ꢀQ.; Wei, Y.; Chen, J.ꢀR.; Xiao, W.ꢀJ. Bifunꢀ
tional Photocatalysts for Enantioselective Aerobic Oxidation
of βꢀKetoesters. J. Am. Chem. Soc. 2017, 139, 63. (b) Huo,
H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L.ꢀA.;
Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Asymmetric
Photoredox TransitionꢀMetal Catalysis Activated by Visible
Light. Nature 2014, 515, 100. (c) Bauer, A.; Westkämper, F.;
Grimme, S.; Bach, T. Catalytic Enantioselective Reactions
Driven by Photoinduced Electron Transfer. Nature 2005, 436,
1139.
23) Clark, W. D. K.; Litt, A. D.; Steel, C. Triplet Lifetimes of
Benzophenone, Acetophenone, and Triphenylene in Hydroꢀ
carbons. J. Am. Chem. Soc. 1969, 91, 5413.
9
24) For acidity of ketyl radicals: (a) Kalinowski, M. K.;
Grabowski, Z. R.; Pakula, B. Reactivity of Ketyl Free Radiꢀ
cals. Part 1.ꢀAcid Dissociation of Aromatic Ketyls and Pinaꢀ
cols. Trans. Faraday. Soc., 1966, 62, 918. (b) Lund, T.;
Wayner, D. D. M. Jonsson, M.; Larsen, A.; Daasbjerg, K. Oxꢀ
idation Potentials of αꢀHydroxyl Radicals in Acetonitrile Obꢀ
tained by Photomodulated Voltammetry. J. Am. Chem. Soc.
2001, 123, 12590. (b) Tang, X.; Studer, A. Alkene 1,2ꢀ
Difuntionalization by Radical Alkenyl Migration. Angew.
Chem. Int. Ed. 2018, 57, 814.
25) Leigh, W. J.; Arnold, D. R.; Humphreys, R. W. R.; Wong, P.
C. Merostabilization in Radical Ions, Triplets, and Biradicals.
4. Substituent Effects on the HalfꢀWave Reduction Potentials
and n, π* Triplet Energies of Aromatic Ketones. Can. J.
Chem. 1980, 58, 2537.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
26) For Ered[NiI/Ni0] vs Ag/AgNO3, see: (a) Börjesson, M.; Moraꢀ
gas, T.; Martin, R. NiꢀCatalyzed Carboxylation of Unactivatꢀ
ed Alkyl Chlorides with CO2. J. Am. Chem. Soc. 2016, 138,
7504. For Ered[NiI/Ni0] vs SCE, see: (b) Klein, A.; Kaiser, A.;
Sarkar, B.; Wanner, M.; Fiedler, J. The Electrochemical Beꢀ
haviour of Organonickel Complexes: Monoꢀ, Diꢀ and Trivaꢀ
lent Nickel. Eur. J. Inorg. Chem. 2007, 965. (c) Cannes, C.;
Labbé, E.; Durandetti, M.; Devaud, M.; Nédélec, J. Y. Nickꢀ
elꢀCatalyzed Electrochemical Homocoupling of Alkenyl Halꢀ
ides: Rates and Mechanisms. J. Electroanal. Chem. 1996,
412, 85.
19) For ketoneꢀcatalyzed sp3 CꢀH functionalization using visible
light sources: (a) Xia, J.ꢀB.; Zhu, C.; Chen. C. Visible Lightꢀ
Promoted MetalꢀFree C–H Activation: Diarylketoneꢀ
Catalyzed Selective Benzylic Monoꢀ and Difluorination. J.
Am. Chem. Soc. 2013, 135, 17494. (b) Xia, J.ꢀB.; Zhu, C.;
Chen. C. Visible LightꢀPromoted MetalꢀFree sp3ꢀCꢀH Fluoriꢀ
nation. Chem. Commun., 2014, 50, 11701. (c) Paul, S.; Guin,
J. Radical C(sp3)ꢀH Alkenylation, Alkynylation and Allylaꢀ
tion of Ethers and Amides Enabled by Photocatalysis. Green
Chem. 2017, 19, 2530.
20) For reviews on dual catalysis in photochemical events: (a)
Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.;
MacMillan, D. W. C. The Merger of Transition Metal and
Photocatalysis. Nat. Rev. Chem. 2017, 1, 0052. (b) Levin, M.
D.; Kim, S.; Toste, F. D. Photoredox Catalysis Unlocks Sinꢀ
gleꢀElectron Elementary Steps in Transition Metal Catalyzed
CrossꢀCoupling. ACS Cent. Sci. 2016, 2, 293. (c) Hopkinson,
M. N.; Sahoo, B.; Li, J.ꢀL.; Glorius, F. Dual Catalysis Sees
the Light: Combining Photoredox with Organoꢀ, Acids, and
TransitionꢀMetal Catalysis. Chem. Eur. J. 2014, 20, 3874. (d)
Skubi, K. L.; Blum, T. R.; Yoon, T. P. dual catalysis strateꢀ
gies in photochemical synthesis. Chem. Rev. 2016, 116,
10035. (e) Marzo, L.; Pagore, S. K.; Reiser, O.; König, B.
VisibleꢀLight Photocatalysis: Does It Make A Difference in
Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 2.
21) For recent reviews on organic photocatalysts, see: (a)
Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalyꢀ
sis. Chem. Rev., 2016, 116, 10075. (b) Majek, M.; von
Wangelin, A. J. Mechanistic Perspectives on Organic Photoꢀ
redox Catalysis for Aromatic Substitutions. Acc. Chem. Res.,
2016, 49, 2316. (c) Chen, C. The Past, Present, and Future of
the Yang Reaction. Org. Biomol. Chem. 2016, 14, 8641. (d)
Ravelli, Fagnoni, M.; Albini, A. Photoorganocatalysis. What
for? Chem. Soc. Rev., 2013, 42, 97. (e) Fagnoni, M.; Dondi,
D.; Ravelli, D.; Albini, A. Photocatalysis for the Formation of
the CꢀC Bond. Chem. Rev. 2007, 107, 2725.
27) Selected references: (a) Demeter, A.; Horváth, K.; Böör, K.;
Molnár, L.; Soós, T.; Lendvay, G. Substituent effect on the
photoreduction kinetics of benzophenone. J. Phys. Chem. A.,
2013, 117, 10196. (b) Jacques, P.; Lougnot, D. J.; Fouassier,
J. P.; Scaiano, J. C. Location Effects upon the Kinetic Behavꢀ
ior of Benzophenone in Micellar Solution. Chem. Phys. Lett.
1986, 127, 469. (c) refs 8, 18cꢀd and 24.
28) See Supporting information for details.
29) See for example: (a) Zhang, X.; Wang, C. –J.; Liu, L. –H.;
Jiang, Y. –B. J. Phys. Chem. B., 2002, 106, 12432. (b) Wagꢀ
ner, P. J.; Truman, R. J.; Scaiano, J. C. J. Am. Chem. Soc.
1985, 107, 7093. (c) Wintgens, V.; Valat, P.; Kossanyi, J.;
Demeter, A.; Biczók, L.; Bérces, T. J. Photochem. Photobiol.
A., 1996, 93, 109. (d) ref. 25.
30) For a nonꢀphotocatalytic C–H arylation of THF requiring
stoichiometric amounts of diꢀtert-butyl peroxide: Liu, D.; Liu,
C.; Li, H.; Lei, A. Direct Functionalization of Tetrahydrofuꢀ
ran and 1,4ꢀDioxane: NickelꢀCatalyzed Oxidative C(sp3)ꢀH
Arylation. Angew. Chem. Int. Ed. 2013, 52, 4453.
31) For a discussion on the intriguing role of oxygen in Ir photoꢀ
redox/nickel catalysis: Oderinde, M. S.; VarelaꢀAlvarez, A.;
Aquila, B.; Robbins, D. W. Effects of Molecular Oxygen,
Solvent, and Light on IridiumꢀPhotoredox/Nickel Dualꢀ
Catalyzed CrossꢀCoupling Reactions. J. Org. Chem. 2015, 80,
7642.
32) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent Adꢀ
vances in Homogeneous Nickel Catalysis. Nature 2014, 509,
299ꢀ309. (b) Diederich, F.; Meijere, A., Eds. Metal-Catalyzed
Cross-Coupling Reactions; WileyꢀVCH: Weinheim, 2004.
33) Barry, J. T.; Berg, D. J.; Tyler, D. R. Radical Cage Effects;
Comparison of Solvent Bulk Viscosity and Microviscosity in
Predicting the Recombination Efficiencies of Radical Cage
Pairs. J. Am. Chem. Soc. 2016, 138, 9389.
22) For nonꢀnoble metalꢀbased photocatalysts in arylation reacꢀ
tions initiated by SET: (a) Luo, J.; Zhang, J. DonorꢀAcceptor
Fluorophores for VisibleꢀLightꢀPromoted Organic Synthesis:
Photoredox/Ni Dual Catalytic C(sp3)ꢀC(sp2) CrossꢀCoupling.
ACS Catal., 2016, 6, 873. (b) McTiernan, C. D.; Leblanc, X.;
Scaiano, J. C. Heterogeneous TitiniaꢀPhotoredox/Nickel Dual
Catalysis: Decarboxylative CrossꢀCoupling of Carboxylic Acꢀ
ids with Aryl Iodides. ACS Catal., 2017, 7, 2171. (c) Matsui,
ACS Paragon Plus Environment