V. Benessere, A. De Roma, R. Del Litto, M. Lega, F. Ruffo
SHORT COMMUNICATION
68.72, H 5.34, N 3.35. [α] = 3.5 (c 1.0, CHCl3). 1H NMR: δH
=
Acknowledgments
7.85 (m, 1 H), 7.58 (d, 3JNH-H1 = 9.0 Hz, 1 H, NH), 7.47 (m, 1 H),
3
7.36–6.97 (m, 26 H), 6.37 (d, JNH-H2 = 8.5 Hz, 1 H, NH), 5.29 (t,
The authors thank the CIMCF (Università di Napoli “Federico
II”) for NMR facilities.
3
3
3
3JH1-NH = JH1-H2, 1 H, 1-H), 5.18 (t, JH4-H3 = JH4-H5 = 9.5 Hz,
3
3
1 H, 4-H), 5.02 (t, JH2-H3 = JH3-H4, 1 H, 3-H), 4.47 (q, 1 H, 2-
H), 4.17 (dd, JH6-H5 = 4.11, JH6-H6Ј = 12.4 Hz, 1 H, 6-H), 3.94
3
2
[1] H. U. Blaser, E. Schmidt (Eds.), Asymmetric Catalysis on Indus-
trial Scale, Wiley-VCH, Weinheim, 2004.
3
(dd, JH6Ј-H5 = 1.86 Hz, 1 H, 6Ј-H), 3.63 (m, 1 H, 5-H), 1.99 (s, 3
H, AcO), 1.96 (s, 3 H, AcO), 1.93 (s, 3 H, AcO) ppm. 13C NMR: [2] a) V. Benessere, F. Ruffo, Tetrahedron: Asymmetry 2010, 21,
171; b) V. Benessere, M. Lega, F. Ruffo, A. Silipo, Tetrahedron
2011, 67, 4826.
δC = 172.3, 171.2, 170.8, 169.7, 168.8, 141–127 (aromatics), 80.8,
73.8, 73.3, 68.14, 62.2, 53.9, 21.4, 21.2, 21.0 ppm. 13P NMR: δ =
–8.0, –12.0 ppm.
[3] Other groups are also active within this field of research. For
reviews, see: a) D. Steinborn, H. Junicke, Chem. Rev. 2000, 100,
4283; b) M. Diéguez, O. Pàmies, A. Ruiz, Y. Diàz, S. Castillón,
C. Claver, Coord. Chem. Rev. 2004, 248, 2165; c) M. Diéguez,
O. Pàmies, C. Claver, Chem. Rev. 2004, 104, 3189; d) Y. Diàz,
S. Castillón, C. Claver, Chem. Soc. Rev. 2005, 34, 702; e) M.
Diéguez, C. Claver, O. Pàmies, Eur. J. Org. Chem. 2007, 4621;
f) M. M. K. Boysen, Chem. Eur. J. 2007, 13, 8648; g) M. Dié-
guez, O. Pàmies, Chem. Eur. J. 2008, 14, 944; h) V. Benessere,
A. De Roma, R. Del Litto, F. Ruffo, Coord. Chem. Rev. 2010,
254, 390; i) M. Diéguez, O. Pàmies, S. Woodward, Coord.
Chem. Rev. 2010, 254, 2007.
[4] a) B. M. Trost, D. L. Van Vranken, C. Bingel, J. Am. Chem.
Soc. 1992, 114, 9327; b) T. P. Yoon, E. N. Jacobsen, Science
2003, 299, 1691; c) Q. L. Zhou (Ed.), Privileged Chiral Ligands
and Catalysts, Wiley-VCH, Weinheim, 2011.
[5] a) V. Benessere, A. De Roma, F. Ruffo, ChemSusChem 2008, 1,
425; b) A. De Roma, F. Ruffo, S. Woodward, Chem. Commun.
2008, 5384.
Preparation of Elpanphos-aЈ: A solution of elpanphos-a (0.44 g,
0.50 mmol) in methanol (5 mL) was saturated with gaseous ammo-
nia. After a few hours, addition of diethyl ether (50 mL) caused
precipitation of the product as a white solid, which was filtered,
washed with diethyl ether and dried under vacuum (0.30 g, 80%).
C44H40N2O6P2 (754.76): calcd. C 70.02, H 5.34, N 3.71; found C
1
69.77, H 5.41, N 3.59. [α] = 10.5 (c 1.0, MeOH). H NMR: δH
=
=
3
7.85 (m, 1 H), 7.70 (m, 1 H), 7.5–6.9 (m, 26 H), 5.09 (d, JH1-H2
3
9.7 Hz, 1 H, 1-H), 4.05 (t, JH3-H2 = 9.9 Hz, 1 H, 2-H), 3.87 (d,
2Jgem = 12.5 Hz, 1 H, 6-H), 3.71 (dd, JH6Ј-H5 = 4.9 Hz, 1 H, 6Ј-
3
H), 3.65–3.30 (m, 3 H, 3-H, 4-H, 5-H) ppm. 13C NMR: δC = 174.6,
172.6, 145–130 (aromatics), 82.8, 81.0, 77.6, 73.2, 64.1, 58.0 ppm.
13P NMR: δP = –7.0, –10.5 ppm.
Desymmetrization of meso-2-Cyclopenten-1,4-diol-isocyanate in
THF
[6] The name elpanphos was constructed by reversing the letters
of the term naple.
[7] A. Bertho, A. Révész, Justus Liebigs Ann. Chem. 1953, 581, 11.
[8] B. Cornils, W. A. Herrmann, I. T. Horvarth, W. Leitner, S.
Mecking, H. Olivier-Borbigou, D. Vogt (Eds.), Multiphase
Homogeneous Catalysis, Wiley-VCH, Weinheim, 2005.
[9] a) B. M. Trost, D. L. Van Vranken, Angew. Chem. Int. Ed. Engl.
1992, 31, 228; b) B. M. Trost, D. L. Van Vranken, J. Am. Chem.
Soc. 1993, 115, 444; c) B. M. Trost, B. Breit, Tetrahedron Lett.
1994, 35, 5817; d) B. M. Trost, B. Breit, S. Peukert, J. Zam-
brano, J. W. Ziller, Angew. Chem. Int. Ed. Engl. 1995, 34, 2386;
e) B. M. Trost, D. E. Patterson, J. Org. Chem. 1998, 63, 1339;
f) S. Lee, C. W. Lim, C. E. Song, K. M. Kim, C. H. Jun, J. Org.
Chem. 1999, 64, 4445; g) C. W. Lim, S. Lee, Tetrahedron 2000,
56, 5135; h) B. M. Trost, J. L. Zambrano, W. Ritcher, Synlett
2001, 907; i) N. Buschmann, A. Rueckert, S. Blechert, J. Org.
Chem. 2002, 67, 4325; j) C. E. Song, J. W. Yang, E. J. Roh, S. G.
Lee, J. H. Ahn, H. Han, Angew. Chem. Int. Ed. 2002, 41, 3852;
k) B. M. Trost, Z. Pan, J. Zambrano, G. Kujat, Angew. Chem.
Int. Ed. 2002, 41, 4691; l) A. Agarkov, E. W. Uffman, S. R.
Gibeltson, Org. Lett. 2003, 5, 2091; m) D. Zhao, Z. Wang, K.
Ding, Synlett 2005, 2067.
Without NEt3: meso-2-cyclopenten-1,4-diol-isocyanate (0.10 g,
0.20 mmol), [Pd2(dba)3]·CHCl3 (0.005 g, 0.005 mmol) and the li-
gand (0.015 mmol) were dissolved in dry THF (1 mL). The mixture
was stirred at the desired temperature, and, after the required reac-
tion time, the solvent was removed under vacuum. Column
chromatography on silica gel (1:2 ethyl acetate/hexane) gave the
desired product as a white solid in 80–85% yield.
With NEt3: meso-2-cyclopenten-1,4-diol-isocyanate (0.10 g,
0.20 mmol), [Pd2(dba)3]·CHCl3 (0.005 g, 0.005 mmol) and the li-
gand (0.015 mmol) were dissolved in dry THF (1 mL) containing
triethylamine (0.030 g, 0.30 mmol). The mixture was stirred at the
desired temperature, and, after the required reaction time, the sol-
vent was removed under vacuum. Column chromatography on sil-
ica gel (1:2 ethyl acetate/hexane) gave the desired product as a white
solid in 80–85% yield.
In
RTIL:
meso-2-cyclopenten-1,4-diol-isocyanate
(0.050 g,
0.10 mmol), [Pd2(dba)3]·CHCl3 (0.005 g, 0.005 mmol) and el-
panphos-aЈ (0.012 g, 0.015 mmol) were vigorously stirred in RTIL
(1 mL) under an inert atmosphere. After 30 min, the product was
extracted with dry diethyl ether (3ϫ15 mL) in 70–80% yield and
analyzed. Recycling was carried out by adding fresh substrate and
triethylamine to the active catalytic solution.
[10] B. M. Trost, M. Machacek, A. Aponick, Acc. Chem. Res. 2006,
39, 747.
[11] J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.
[12] Two convenient ionic liquids were used: 1-butyl-3-methylimida-
zolium tetrafluoroborate (bmimBF4) and 1-butyl-4-methylpyr-
idinium tetrafluoroborate (bmpyBF4).
[13] See, for example: M. R. Castillo, S. Castillón, C. Claver, J. M.
Fraile, A. Gual, M. Martín, J. A. Mayoral, E. Sola, Tetrahedron
2011, 67, 5402.
The enantiomeric excesses were determined by chiral HPLC, Chira-
cel OD-H, 1:10 2-propanol/hexane, UV 254 nm, retention times:
–(R,S)-2: 22–24 min; +(S,R)-2: 30–32 min. The absolute configura-
tion was obtained by comparison with a sample of known chirality.
[14] AAA is the acronym for asymmetric allylic alkylation, a palla-
dium-catalyzed substitution reaction of a nucleophile with a
substrate containing a leaving group in an allylic position.
[15] R. H. Crabtree, New J. Chem. 2011, 35, 18.
Supporting Information (see footnote on the first page of this arti-
Received: July 1, 2011
cle): Relevant proton and carbon NMR spectra are presented.
Published Online: August 25, 2011
5782
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 5779–5782