Table 2 (continued )
Entry
9
Amide
Conversion(%)b neat
o1
28 (150 1C)c
Conversion (%)b in toluene
Catalyst
Time (h)
Conversion (%)b
6
ZrCp2Cl2
22
24
83 (72)
55
44 (150 1C)c
ZrCl4
d
10
11
56
61
58
100 (90)
100 (92)
82 (78)
ZrCl4
ZrCl4
5
5
100 (91)
100 (91)
89 (78)
12
13
ZrCl4
ZrCl4
10
22
0
0
64 (56)
0 (150 1C)c
79 (150 1C)c
499% ee
14
0
84 (76)
ZrCl4
16
93 (84)
15e
16
81
92 (88)
37
ZrCl4
12
24
100 (81)
100 (88)
0
ZrCp2Cl2
0 (150 1C)c
69 (150 1C)c
17
0
14
66 (150 1C)c
ZrCp2Cl2
24
100 (85)
49 (150 1C)c
For additional examples see Supporting Information; Determined by 1H NMR analysis, isolated yields shown in parentheses where appropriate;
a
b
c
d
e
Reactions run at 150 1C were performed in xylenes; Run with 10 mol% catalyst; Run with 1 equivalent N,N-diisopropylethylamine.
that 100% conversion was achieved in both cases, compared
with the uncatalyzed rates which gave 37% conversion for
paracetamol and only 14% conversion for moclobemide
(at 110 1C).
The reversibility of this reaction was tested by reacting
N-benzyl-4-chlorobenzamide with water under the standard
reaction conditions. In the absence of catalyst, no hydrolysis was
seen and with 5 mol% ZrCl4 only 5% hydrolysis was observed.
The scalability of the uncatalysed reaction was assessed by
performing the reaction of 3-phenylpropionic acid and benzyl-
amine on a 400 mmol scale. After 28 h, 100% conversion into
the amide was achieved and the product isolated in 93% yield
(93 g) after recrystallisation.
8 U. Schmidt and M. Dietsche, Angew. Chem., Int. Ed. Engl., 1982,
21, 143.
9 M. Thorsen, T. P. Andersen, U. Pedersen, B. Yde and
S. Lawesson, Tetrahedron, 1985, 41, 5633.
10 K. Ishihara, S. Ohara and H. Yamamoto, J. Org. Chem., 1996,
61, 4196.
11 P. Starkov and T. D. Sheppard, Org. Biomol. Chem., 2011, 9, 1320.
12 H. Charville, D. Jackson, G. Hodges and A. Whiting, Chem.
Commun., 2010, 46, 1813.
13 M. Hosseini-Sarvari and H. Sharghi, J. Org. Chem., 2006, 71, 6652.
14 T. Ogawa, T. Hikasa, T. Ikegami, N. Ono and H. Suzuki, J. Chem.
Soc., Perkin Trans. 1, 1994, 1, 3473.
15 J. D. Wilson and H. Weingarten, Can. J. Chem., 1970, 43, 983.
16 S. Caddick, Tetrahedron, 1995, 51, 10403.
17 R. S. Varma, Green Chem., 1999, 1, 43.
18 L. Perreux, A. Loupy and F. Volatron, Tetrahedron, 2002, 58, 2155.
19 J. Cossy and C. Palegrosdemange, Tetrahedron Lett., 1989, 30, 2771.
20 L. J. Gooßen, D. M. Ohlmann and P. P. Lange, Synthesis, 2009, 160.
21 K. Arnold, B. Davies, R. L. Giles, C. Grosjean, G. E. Smith and
A. Whiting, Adv. Synth. Catal., 2006, 348, 813.
22 H. Charville, D. A. Jackson, G. Hodges, A. Whiting and
M. R. Wilson, Eur. J. Org. Chem., 2011, 5981.
23 C. L. Allen, A. A. Lapkin and J. M. J. Williams, Tetrahedron Lett.,
2009, 50, 4262.
In summary, the direct thermal amidation of carboxylic acids
with amines occurs at 110 1C in toluene for a range of substrates.
Several simple Lewis acids catalyzed the reaction and two
zirconium catalysts were particularly effective for the process.
Notes and references
24 A. J. A. Watson, A. C. Maxwell and J. M. J. Williams, Org. Lett.,
2009, 11, 2667.
1 J. S. Carey, D. Laffan, C. Thomson and M. T. Williams,
Org. Biomol. Chem., 2006, 4, 2337.
25 N. A. Owston, A. J. Parker and J. M. J. Williams, Org. Lett., 2007,
9, 3599.
26 C. L. Allen, C. Burel and J. M. J. Williams, Tetrahedron Lett.,
2010, 51, 2724.
27 C. L. Allen, S. Davulcu and J. M. J. Williams, Org. Lett., 2010,
12, 5096.
28 C. Han, J. P. Lee, E. Lobkovsky and J. A. Porco, J. Am. Chem.
Soc., 2005, 127, 10039.
2 C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405.
3 F. L. Dunlap, J. Am. Chem. Soc., 1902, 24, 758.
4 J. A. Mitchell and E. E. Reid, J. Am. Chem. Soc., 1931, 53, 1879.
5 E. E. Shepard, H. D. Porter, J. F. Noth and C. K. Simmans,
J. Org. Chem., 1952, 17, 568.
6 E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
7 C. Burnell-Curty and E. J. Roskamp, Tetrahedron Lett., 1993,
34, 5193.
c
668 Chem. Commun., 2012, 48, 666–668
This journal is The Royal Society of Chemistry 2012