150
P. V. Chouthaiwale et al. / Tetrahedron Letters 53 (2012) 148–150
Table 4
however be obtained in excellent yields when the reaction was
performed in DMF/H2O (4:1) as solvent system.
Pd-catalyzed hydrosilylation of carbonyl compounds: competitive experimentsa
Entry Substrates
Product
Yieldb,c
(%)
Acknowledgments
a
b
c
d
e
f
PhCH2CH2COCH3 + PhCOCH3
PhCH(OSiEt3)CH3
PhCH2OSiEt3
PhCH(OSiEt3)CH3
PhCH2OSiEt3
PhCH2OSiEt3
4-CF3
96
91
94
88
84
90
PhCH2CH2COCH3 + PhCHO
PhCH2CH2COCH3 + PhCOCH3
PhCH2CH2CHO + PhCHO
PhCHO + PhCOCH3
The authors P.V.C. and V.R. thank CSIR and DST, New Delhi
(No. SR/S1/OC-67/2010) for the financial support.
References and notes
4-CF3 PhCHO + 4-CH3 PhCHO
PhCH2OSiEt3 + 4-
CH3 PhCH2OSiEt3
(2.5:1)
1. Handbook of Homogeneous Hydrogenation; De Vries, J. G., Elsevier, C. J., Eds.;
Wiley-VCH: Weinheim, Germany, 2007.
PhCHO
Ph
g
PhCH2OSiEt3
PhCH2OSiEt3
91
83
2. (a) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport,
Z., Eds.; Wiley: New York, 1989; Vol. 1, (b) Ojima, I.; Li, Z.; Zhu, J. In The
Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John
Wiley & Sons: New York, 1998; Vol. 2, (c) Carpentier, J.-F.; Bette, V. Curr. Org.
Chem. 2002, 6, 913; (d) Riant, O.; Mostefa, N.; Courmarcel, J. Synthesis 2004,
2943.
3. Inagaki, T.; Yamada, Y.; Phong, L. T.; Furuta, A.; Ito, J.-I.; Nishiyama, H. Synlett
2009, 253.
4. (a) Inagaki, T.; Phong, L. T.; Furuta, A.; Ito, J.-I.; Nishiyama, H. Chem. Eur. J. 2010,
16, 3090; (b) Yang, J.; Tilley, T. D. Angew. Chem., Int. Ed. 2010, 49.
5. Anada, M.; Tanaka, M.; Suzuki, K.; Nambu, H.; Hashimoto, S. Chem. Pharm. Bull.
2006, 54, 1622.
PMP
Ph-CHO
h
Ph
N
Reagents and conditions:
a
1:1 Molar equivalents of substrates (5 mmol each), Pd(OAc)2 (0.5 mol %), Et3SiH
(6 mmol), dry DMF (10 ml), 25 °C, 1 h.
b
Isolated yield.
1H NMR spectrum of the crude sample indicates no reaction for other substrate.
c
6. (a) Diez-Gonzalez, S.; Stevens, E. D.; Scott, N. M.; Petersen, J. L.; Nolan, S. P.
Chem. Eur. J. 2008, 14, 158; (b) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew.
Chem., Int. Ed. 2010, 49, 1472.
7. Dong, H.; Berke, H. Adv. Synth. Catal. 2009, 351, 1783.
8. (a) Diez-Gondlez, S.; Nolan, S. P. Org. Prep Proc. Int. 2007, 39, 523;
(b)Hydrosilylation A Comprehensive Review on Recent Advances; Marciniec, B.,
Ed.; Springer: Netherlands, 2009. chap. 9.
+
2 Et3SiH Pd(OAc)2
2 Et3Si(OAc) + H2
Et3SiH
Pd(0)
OSiEt3
9. (a) Boukherroub, R.; Chatgilialoglu, C.; Manuel, G. Organometallics 1996, 15,
1508; (b) Ferreri, C.; Costantino, C.; Chatgilialoglu, C.; Boukherroub, R.; Manuel,
G. J. Organomet. Chem 1998, 554, 135.
Ar
10. Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M.; Tabar-Hydar, K.;
Hoseini, M. J. Organomet. Chem. 2003, 678, 1.
11. Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M. Appl. Organomet. Chem.
2006, 20, 214.
O
12. Motoda, D.; Shinokubo, H.; Oshima, K. Synlett 2002, 9, 1529.
13. Mandal, P. K.; McMurray, J. S. J. Org. Chem. 2007, 72, 6599.
14. (a) Keinan, E.; Greenspoon, N. J. Am. Chem. Soc. 1986, 108, 7314; (b) Mirza-
Aghayan, M.; Boukherroub, R.; Bolourtchian, M.; Rahimifard, M. J. Organomet.
Chem. 2007, 692, 5113.
15. (a) Mirza-Aghayan, M.; Boukherroub, R.; Rahimifard, M. J. Organomet. Chem.
2008, 693, 3567; (b) Mirza-Aghayan, M.; Boukherroub, R.; Rahimifard, M.
Tetrahedron Lett. 2009, 50, 5930–5932.
16. Sprengers, J. W.; de Greef, M.; Duin, M. A.; Elsevier, C. J. Eur. J. Inorg. Chem. 2003,
3811.
17. Nakanishi, J.; Tatamidani, H.; Fukumoto, Y.; Chatani, N. Synlett 2006, 6, 869.
18. Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M. J. Organomet. Chem.
2005, 690, 2372.
19. Thakur, V. V.; Ramesh Kumar, N. S. C.; Sudalai, A. Tetrahedron Lett. 2004, 45,
2915.
20. Ramesh Kumar, N. S. C.; Victor Paul Raj, I.; Sudalai, A. J. Mol. Cat. A.: Chemical
2007, 269, 218.
21. General experimental procedure for the hydrosilylation of aryl ketones and
aldehydes:
Ar
Et3SiPdH
Scheme 2. Catalytic cycle for Pd-catalyzed hydrosilylation of aromatic ketones and
aldehydes.
On the other hand, p-fluorobenzaldehyde underwent the reaction
smoothly to give the corresponding hydrosilylated product with-
out the fluoro group being affected.23 However, the reaction failed
in the case of aliphatic ketones and aldehydes, which is a limitation
of this protocol. This catalytic system can be unique in selectively
hydrosilylating aromatic ketones or aldehydes in the presence of
aliphatic ketones or aldehydes. This was substantiated by carrying
out the competitive experiments involving 1:1 molar equivalents
of aliphatic ketones/aldehydes and aromatic ketones/aldehydes,
results of which are presented in Table 4. As can be seen from Table
4, acetylene and imine groups were not affected in the presence of
aromatic aldehyde. For 4-phenylbut-3-en-2-one and cinnamalde-
hyde, the corresponding saturated 4-phenyl-2-butanone and
hydrocinnamaldehyde were obtained in 78% and 69% yields
respectively. The catalytic cycle for the Pd-catalytic hydrosilylation
process is shown in Scheme 2. The first step involves the reaction
of Pd(OAc)2 with Et3SiH to give the active metallic Pd(0) species.
The oxidative addition of Et3SiH with Pd(0) then leads to the for-
mation of highly reactive intermediate Et3SiPdH complex,22 which
transfers hydride to aromatic carbonyl compounds followed by
reductive elimination affording aryloxy silylated compounds along
with the liberation of Pd(0).
To a stirred solution of palladium catalyst (0.5 mol %) in dry DMF (2.0 mL) was
added aryl ketones or aryl aldehydes (1.0 mmol) followed by the addition of
triethylsilane (1.2 mmol). The resulting solution was then stirred for 1 h. After
completion of the reaction, it was subsequently loaded directly onto the
column (silica gel 60–120 mesh) for purification using petroleum ether as
eluents to afford pure 2 or 3, respectively.
Spectral data for compound 2f: Yield: 91%; colorless liquid; 1H NMR (200 MHz,
CDCl3): d 0.60 (q, J = 8.1 Hz, 6H), 0.93 (t, J = 8.0 Hz, 9H), 1.58–2.01 (m, 4H),
2.57–2.82 (m, 2H), 4.72 (t, J = 4.3 Hz, 1H) 6.92–7.07 (m, 3H), 7.26–7.29 (m, 1H);
13C NMR (50 MHz, CDCl3): d 5.4, 7.0, 19.5, 29.1, 33.1, 69.2, 125.1, 126.9, 127.9,
128.5, 136.6, 139.8; Anal. Calcd for C16H26Osi: C, 73.22; H, 9.98. Found: C,
73.28; H, 9.82.
Spectral data for compound 3e: 96%; colorless liquid; 1H NMR (200 MHz, CDCl3):
d 0.61 (q, J = 8.0 Hz, 6H), 0.93 (t, J = 8.3 Hz, 9H), 4.61 (s, 2H), 5.93 (s, 2H), 6.74 (d,
J = 1.0 Hz, 2H), 6.82 (s, 1H); 13C NMR (50 MHz, CDCl3): d 4.4, 6.7, 64.5, 100.6,
107.1, 107.8, 119.3, 135.2 146.4, 147.5; Anal. Calcd for C14H22O3Si: C, 63.12; H,
8.32. Found: C, 63.28; H, 8.20.
In conclusion, we have shown that Pd salts are highly effective
catalysts for selective hydrosilylation of aryl ketones and alde-
hydes, when carried out in DMF as solvent at 25 °C and triethylsi-
lane as hydride source. The corresponding benzylic alcohols could
22. (a) Kunai, A.; Sakurai, T.; Toyoda, E.; Ishikawa, M.; Yamamoto, Y.
Organometallics 1994, 13, 3233; (b) Ferreri, C.; Costantino, C.; Chatgilialoglu,
C.; Boukherroub, R.; Manuel, G. J. Organomet. Chem. 1998, 554, 135.
23. Dong, H.; Berke, H. Adv. Synth. Catal. 2009, 351, 1783–1788.