Langmuir
Article
which reduces the nonradiative decay pathways through
interactions among the neighboring molecules. It is also
important to note that core skeleton adopts nonplanar
geometry and rather buckled shape which inhibits face-to-face
molecular stacking, too. Therefore, the abundant intermolecular
interactions can enhance the rigidity of these compounds and
may be an advantage to the emission of aggregation state.
The intermolecular interactions of the outer 3,5-bis-
(trifluoromethyl)phenyl groups, which may determine the
self-assembly feature of the bulk sample, make molecules stack
into 1-D molecular columns, as shown in Figure 9b. Such a
packing structure implies that these types of molecules have a
natural tendency to aggregate into linear 1-D structures. The
single-crystal structure of compound 2 therefore provides a
rational explanation for the formation of 1-D microfibers. To
evaluate the molecular structure and packing structure of the
self-assembly structures, X-ray diffraction (XRD) patterns of
microwires constructed by compound 2 and that of single
crystal of compound 2 calculated from single crystal data were
compared (Figure S5). The XRD patterns of the microwires are
similar to the XRD pattern of single crystal which suggests that
molecular packing of the fibers is analogous to that in a single
crystal of 2.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (50773027 and 50733002), the Major
State Basic Research Development Program (2009CB939700),
and 111 Project (B06009).
REFERENCES
■
(1) (a) Shah, P. S.; Hanrath, T.; Johnston, K. P.; Korian, B. A. J. Phys.
Chem. B 2004, 108, 9574. (b) Hayden, O.; Payne, C. K. Angew. Chem.,
Int. Ed. 2005, 44, 1395. (c) Duan, X.; Huang, Y.; Cui, Y.; Wang, J.;
Lieber, C. M. Nature 2001, 409, 66.
(2) (a) Henglein, A. Chem. Rev. 1989, 89, 1861. (b) Burda, C.; Chen,
X. B.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.
(c) Moriarty, P. Rep. Prog. Phys. 2001, 64, 297. (d) Peng, X. G.;
Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc.
1997, 119, 7019. (e) Chan, W. C. W.; Nie, S. M. Science 1998, 281,
2016.
(3) (a) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.;
Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. Adv. Mater. 2003, 15, 353.
(b) Hu, J. T.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32,
435.
(4) (a) Naddo, T.; Che, Y.; Zhang, W.; Balakrishnan, K.; Yang, X.;
Yen, M.; Zhao, J.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2007, 129,
6978. (b) Che, Y.; Datar, A.; Balakrishnan, K.; Zang, L. J. Am. Chem.
Soc. 2007, 129, 7234. (c) Che, Y.; Yang, X.; Loser, S.; Zang, L. Nano
Lett. 2008, 8, 2219. (d) Che, Y.; Yang, X.; Zang, L. Chem. Commun.
2008, 1413. (e) Che, Y. K.; Zang, L. Chem. Commun. 2009, 5106.
(5) (a) Dautel, O. J.; Wantz, G.; Almairac, R.; Flot, D.; Hirsch, L.;
Lere-Porte, J.-P.; Parneix, J.-P.; Serein-Spirau, F.; Vignau, L.; Moreau, J.
J. E. J. Am. Chem. Soc. 2006, 128, 4892. (b) Zhao, Y. S.; Di, C.; Yang,
W.; Yu, G.; Liu, Y.; Yao, J. Adv. Funct. Mater. 2006, 16, 1985. (c) Zhao,
Y. S.; Fu, H.; Hu, F.; Peng, A.; Yang, W.; Yao, J. Adv. Mater. 2008, 20,
79. (d) Datar, A.; Balakrishnan, K.; Yang, X.; Zuo, X.; Huang, J.;
Oitker, R.; Yen, M.; Zhao, J.; Tiede, D. M.; Zang, L. J. Phys. Chem. B
2006, 110, 12327. (d) Lei, Y. L.; Liao, Q.; Fu, H. B.; Yao, J. N. J. Am.
Chem. Soc. 2010, 132, 1742. (e) Wang, X.; Yan, J.; Zhou, Y.; Pei, J. J.
Am. Chem. Soc. 2010, 132, 15872. (f) Kang, L. T.; Fu, H. B.; Cao, X.
Q.; Shi, Q.; Yao, J. N. J. Am. Chem. Soc. 2011, 133, 1895. (g) Liao, Q.;
Fu, H. B.; Wang, C.; Yao, J. N. Angew. Chem., Int. Ed. 2011, 50, 4942.
(h) Zhang, C.; Zheng, J.; Zhao, Y. S.; Yao, J. N. Adv. Mater. 2011, 23,
1380.
CONCLUSIONS
■
Quinacridine derivatives 1−3 synthesized by introducing 2-
(3,5-bis(trifluoromethyl)phenyl)acetonitrile at the carbonyl
position of alkyl-substituted quinacridones exhibited aggrega-
tion-induced-emission (AIE) and 1D self-assembly properties.
It was found that 2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile
units in these derivatives play a vital role in 1-D self-assembly of
the molecules. All these as-synthesized AIE-active compounds
are red emitting in the aggregated state. These compounds are
also luminescent at low solution temperature, indicating that
restricted intramolecular rotation is the key factor in deciding
AIE effect. These compounds have been employed to fabricate
organic 1-D luminescent nano- and microwires based on
reprecipitation or slow evaporation approaches. The morpho-
logical transition from zero-dimensional (0-D) hollow nano-
spheres to one-dimensional (1-D) nano- and micromaterials
was observed by taking SEM and TEM images of the samples
collected in THF/H2O mixtures at different aging times. The
single-crystal structure of one compound provides a rational
explanation for the 1-D self-assembly feature of the present
compounds.
(6) (a) Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett.
1996, 3066. (b) Briseno, A. L.; Mannsfeld, S. C. B.; Reese, C.;
Hancock, J. M.; Xiong, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Nano Lett.
2007, 7, 2847. (c) Che, Y.; Datar, A.; Yang, X.; Naddo, T.; Zhao, J.;
Zang, L. J. Am. Chem. Soc. 2007, 129, 6354.
(7) (a) Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Nano Lett.
2005, 5, 1293. (b) Yanagi, H.; Morikawa, T. Appl. Phys. Lett. 1999, 75,
187. (c) Balzer, F.; Bordo, V. G.; Simonsen, A. C.; Rubahn, H. G. Appl.
Phys. Lett. 2003, 82, 10. (d) Quochia, F.; Cordella, F.; Mura, A.;
Bongiovanni, G.; Balzer, F.; Rubahn, H. G. Appl. Phys. Lett. 2006, 88,
041106. (e) Zhao, Y. S.; Xu, J.; Peng, A.; Fu, H.; Ma, Y.; Jiang, L.; Yao,
J. Angew. Chem., Int. Ed. 2008, 47, 7301. (f) Zhao, Y. S.; Peng, A.; Fu,
H.; Ma, Y.; Yao, J. Adv. Mater. 2008, 20, 1661. (g) Giansante, C.;
Raffy, G.; Schafer, C.; Rahma, H.; Kao, M. T.; Olive, A. G. L.; Guerzo,
A. D. J. Am. Chem. Soc. 2011, 133, 316. (h) Zhang, X. J.; Zhang, X. H.;
Zou, K.; Lee, C. S.; Lee, S. T. J. Am. Chem. Soc. 2007, 129, 3527.
(8) (a) Yamamoto, Y.; Fukushima, T.; Sun, Y.; Ishii, N.; Saeki, A.;
Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science 2006,
1761. (b) Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D.
E.; Hone, J.; Johnson, A. T.; de Paula, J. C.; Smith, W. F. Nano Lett.
2004, 1261. (c) Zhang, X.; Jie, J.; Zhang, W.; Zhang, C.; Luo, L.; He,
Z.; Zhang, X.; Zhang, W.; Lee, C.; Lee, S. Adv. Mater. 2008, 20, 2427.
(d) Ji, H. X.; Hu, J.-S.; Wan, L. J. Chem. Commun. 2008, 2653.
ASSOCIATED CONTENT
■
S
* Supporting Information
XRD pattern of compound 2, emission spectra of compound 2
at different concentration in THF/H2O mixture, emission
spectra of amorphous powder, nano/microwires and nano-
aggregates of compound 2, TEM images of morphology
transition, and crystallographic data. This material is available
AUTHOR INFORMATION
■
(9) (a) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons,
̈
̈
Corresponding Author
E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119.
(b) Hasobe, T.; Imahori, H.; Fukuzumi, S.; Kamat, P. V. J. Mater.
Chem. 2003, 13, 2515.
1445
dx.doi.org/10.1021/la202755z | Langmuir 2012, 28, 1439−1446