Beilstein J. Org. Chem. 2011, 7, 1436–1440.
6. Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107,
7. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev.
8. Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129,
9. Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73,
10.Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008,
11.Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272–4277.
12.Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K.
13.Peng, Y.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2009, 131,
14.Mizuhara, T.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2010, 75,
15.Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J.
16.ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287,
17.Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.;
Hutchings, G. J. Science 2006, 311, 362–365.
Scheme 3: Possible reaction mechanism.
Conclusion
In conclusion, we have shown an efficient and operationally
simple method to synthesize 1-carbamoyl-2-oxopropyl acetate
derivatives. The readily accessible starting materials, cheap
oxidant DIB, as well as the mild reaction conditions and excel-
lent yields make the present protocol potentially useful in
organic synthesis. Further studies on the application to more
valuable compounds and detailed investigations of the reaction
mechanism are in progress.
18.Piera, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506–3523.
19.Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine; VCH:
New York, 1992.
20.Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic
Press: London, 1997.
21.Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584.
22.Wirth, T., Ed. Hypervalent Iodine Chemistry; Springer-Verlag: Berlin,
2003.
Supporting Information
23.Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45,
Supporting Information File 1
24.Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.;
25.Quideau, S.; Pouységu, L.; Deffieux, D. Synlett 2008, 467–495.
Experimental details and copies of NMR spectra.
26.Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299–5358.
Acknowledgements
The authors thank the College of Pharmaceutical Sciences of
the Southern Medical University of China for financial support
of this work.
27.Koller, R.; Stanek, K.; Stolz, D.; Aardoom, R.; Niedermann, K.;
Togni, A. Angew. Chem., Int. Ed. 2009, 48, 4332–4336.
28.Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49,
29.Niedermann, K.; Früh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A.;
Togni, A. Angew. Chem., Int. Ed. 2011, 50, 1059–1063.
References
1. Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1770.
30.Brand, J. P.; González, D. F.; Nicolai, S.; Waser, J. Chem. Commun.
2. Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077–1101.
31.Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229–4239.
3. Dilman, A. D.; Ioffe, S. L. Chem. Rev. 2003, 103, 733–772.
32.Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073–2085.
4. Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196.
33.Jen, T.; Mendelsohn, B. A.; Ciufolini, M. A. J. Org. Chem. 2011, 76,
1439