PAPER
Pd-Catalysed Arylation of 3-Substituted Thiophenes
3545
13C NMR (50 MHz, CDCl3): d = 14.1, 26.6, 34.6, 61.0, 125.2, 128.6,
129.4, 130.2, 130.4, 136.0, 138.6, 139.3, 171.0, 197.5.
umn. The product was eluted, using an appropriate ratio of Et2O and
pentane to afford the product 34b in 45% (0.117 g) yield (Table 9).
Anal. Calcd for C16H16O3S: C, 66.64; H, 5.59. Found: C, 66.48; H,
5.75.
Ethyl 5-(4-Acetylphenyl)furan-3-carboxylate (35b)
Similar procedure as for 34b using 4-bromoacetophenone (0.199 g,
1 mmol). Product 35b was isolated in 43% (0.111 g) yield.
Traces of 30b were also isolated.
1H NMR (200 MHz, CDCl3): d = 1.28 (t, J = 7.5 Hz, 3 H), 2.63 (s,
3 H), 3.65 (s, 2 H), 4.19 (q, J = 7.5 Hz, 2 H), 7.18 (s, 1 H), 7.38 (s,
1 H), 7.66 (d, J = 8.1 Hz, 2 H), 7.95 (d, J = 8.1 Hz, 2 H).
1H NMR (400 MHz, CDCl3): d = 1.36 (t, J = 7.5 Hz, 3 H), 2.60 (s,
3 H), (q, J = 7.5 Hz, 2 H), 7.09 (s, 1H), 7.73 (d, J = 8.4 Hz, 2 H),
7.98 (d, J = 8.4 Hz, 2 H), 8.05 (s, 1 H).
13C NMR (100 MHz, CDCl3): d = 14.0, 26.2, 60.4, 106.5, 121.3,
123.5, 128.6, 133.5, 135.9, 147.3, 153.6, 162.4, 196.9.
Methyl 4-(3-Ethoxycarbonylmethylthiophen-2-yl)benzoate
(31a)
The reaction of methyl 4-bromobenzoate (0.215 g, 1 mmol) and eth-
yl 3-thiophenylacetate (0.340 g, 2 mmol) afforded the product 31a
in 51% (0.155 g) yield.
Anal. Calcd for C15H14O4: C, 69.76; H, 5.46. Found: C, 69.70; H,
5.54.
1H NMR (200 MHz, CDCl3): d = 1.25 (t, J = 7.5 Hz, 3 H), 3.65 (s,
2 H), 3.93 (s, 3 H), 4.19 (q, J = 7.5 Hz, 2 H), 7.10 (d, J = 5.1 Hz, 1
H), 7.32 (d, J = 5.1 Hz, 1 H), 7.56 (d, J = 8.1 Hz, 2 H), 8.08 (d,
J = 8.1 Hz, 2 H).
Acknowledgment
We thank the Centre National de la Recherche Scientifique and
‘Rennes Metropole’ for providing financial support.
13C NMR (50 MHz, CDCl3): d = 14.1, 34.6, 52.2, 61.0, 125.1, 129.2,
129.9, 130.2, 130.3, 138.4, 139.4, 166.7, 171.0.
References
Anal. Calcd for C16H16O4S: C, 63.14; H, 5.30. Found: C, 63.20; H,
5.41.
(1) (a) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic
Chemistry; Pergamon: Amsterdam, 2000. (b) Handbook of
Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley-Interscience: New York, 2002, Part
III, 213.
(2) Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.;
Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles
1990, 31, 1951.
(3) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007,
107, 174. (b) Satoh, T.; Miura, M. Chem. Lett. 2007, 36,
200. (c) Campeau, L.-C.; Stuart, D. R.; Fagnou, K.
Aldrichimica Acta 2007, 40, 35. (d) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (e) Li, B.-
J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949. (f) Mori, A.;
Sugie, A. Bull. Chem. Soc. Jpn. 2008, 81, 548.
Traces of 31b were also isolated.
1H NMR (200 MHz, CDCl3): d = 1.28 (t, J = 7.5 Hz, 3 H), 3.64 (s,
2 H), 3.92 (s, 3 H), 4.19 (q, J = 7.5 Hz, 2 H), 7.17 (s, 1 H), 7.37 (s,
1 H), 7.64 (d, J = 8.1 Hz, 2 H), 8.02 (d, J = 8.1 Hz, 2 H).
3-Bromo-2-(4-nitrophenyl)thiophene (32a)
The reaction of 4-bromonitrobenzene (0.202 g, 1 mmol) and 3-bro-
mothiophene (0.326 g, 2 mmol) afforded the product 32a in 58%
(0.165 g) yield.
1H NMR (200 MHz, CDCl3): d = 7.09 (d, J = 5.3 Hz, 1 H), 7.39 (d,
J = 5.3 Hz, 1 H), 7.82 (d, J = 8.1 Hz, 2 H), 8.23 (d, J = 8.1 Hz, 2 H).
13C NMR (50 MHz, CDCl3): d = 109.5, 123.8, 126.9, 129.6, 132.4,
135.5, 139.3, 147.2.
(g) McGlacken, G. P.; Batman, L. M. Chem. Soc. Rev. 2009,
38, 2447. (h) Ackermann, L.; Vincente, R.; Kapdi, A. R.
Angew. Chem. Int. Ed. 2009, 48, 9792. (i) Roger, J.;
Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010, 2,
20. (j) Fischmeister, C.; Doucet, H. Green Chem. 2011, 13,
741.
Anal. Calcd for C10H6BrNO2S: C, 42.27; H, 2.13. Found: C, 42.34;
H, 2.21.
Methyl 4-(3-Bromothiophen-2-yl)benzoate (33a)
The reaction of methyl 4-bromobenzoate (0.215 g, 1 mmol) and 3-
bromothiophene (0.326 g, 2 mmol) afforded the product 33a in 46%
(0.137 g) yield.
1H NMR (200 MHz, CDCl3): d = 3.94 (s, 3 H), 7.07 (d, J = 5.1 Hz,
1 H), 7.33 (d, J = 5.1 Hz, 1 H), 7.74 (d, J = 8.1 Hz, 2 H), 8.08 (d,
J = 8.1 Hz, 2 H).
(4) For recent examples of palladium-catalysed direct arylation
or vinylation of heteroaromatics with aryl halides from our
laboratory, see: (a) Gottumukkala, A. L.; Doucet, H. Adv.
Synth. Catal. 2008, 350, 2183. (b) Gottumukkala, A. L.;
Derridj, F.; Djebbar, S.; Doucet, H. Tetrahedron Lett. 2008,
49, 2926. (c) Fall, Y.; Doucet, H.; Santelli, M.
13C NMR (50 MHz, CDCl3): d = 52.2, 108.5, 125.9, 128.7, 129.7,
129.4, 132.0, 136.9, 137.2, 166.6.
ChemSusChem 2009, 2, 153. (d) Roger, J.; Doucet, H. Adv.
Synth. Catal. 2009, 351, 1977. (e) Fall, Y.; Reynaud, C.;
Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2009, 4041.
(f) Dong, J. J.; Roger, J.; Pozgan, F.; Doucet, H. Green
Chem. 2009, 11, 1832. (g) Derridj, F.; Gottumukkala, A. L.;
Djebbar, S.; Doucet, H. Eur. J. Inorg. Chem. 2008, 2550.
(h) Roger, J.; Doucet, H. Tetrahedron 2009, 65, 9772.
(i) Roger, J.; Verrier, C.; Le Goff, R.; Hoarau, C.; Doucet, H.
ChemSusChem 2009, 2, 951. (j) Ionita, M.; Roger, J.;
Doucet, H. ChemSusChem 2010, 3, 367. (k) Fall, Y.;
Doucet, H.; Santelli, M. Synthesis 2010, 127.
Anal. Calcd for C12H9BrO2S: C, 48.50; H, 3.05. Found: C, 48.41; H,
3.24.
Ethyl 5-(3-Nitrophenyl)furan-3-carboxylate (34b)8
3-Bromonitrobenzene (0.202 g, 1 mmol), ethyl 3-furoate (0.280 g,
2 mmol), and KOAc (0.196 g, 2 mmol) were introduced in an oven-
dried Schlenk tube, equipped with a magnetic stirring bar. Then,
Pd(OAc)2 (0.44 mg, 0.002 mmol), dppb (0.84 mg, 0.002 mmol),
and DMA (3 mL) were added, and the Schlenk tube purged several
times with argon. The Schlenk tube was placed in a preheated oil
bath at 130 °C and the reactants were allowed to stir for 20 h. Then,
the reaction mixture was analysed by GC and NMR to determine the
ratio of regioisomers a/b and the conversion of the aryl bromide.
The solvent was removed by heating of the reaction vessel under
vacuum and the residue was charged directly onto a silica gel col-
(5) For selected examples of palladium-catalysed direct
arylations of thiophenes, see: (a) Penalva, V.; Lavenot, L.;
Gozzi, C.; Lemaire, M. Appl. Catal., A 1999, 182, 399.
(b) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am.
Chem. Soc. 2002, 124, 5286. (c) Masui, K.; Ikegami, H.;
Mori, A. J. Am. Chem. Soc. 2004, 126, 5074. (d) Masui, K.;
Synthesis 2011, No. 21, 3530–3546 © Thieme Stuttgart · New York