THF results in a back-formation of the purple di-THF solvated
complex 1 (Scheme 1). Thus, complexes 1 and 2 exhibit reversible
solvatochromic behavior.12
Dark green crystals of 2 suitable for X-ray diffraction analysis
were grown from a saturated benzene solution at rt. The solid-
state molecular structure of 2 is depicted in Fig. 4.‡ The Sm
atom is coordinated to the two cyclopentadienyl rings in a typical
bent-metallocene fashion and no coordinated THF is present. The
cation, Culture, Sports, Science and Technology (MEXT) (Japan)
and the Basic Research Programs CREST Type “Development
of the Foundation for Nano-Interface Technology” from JST
(Japan).
Notes and references
‡ Crystal data for KCpNaph: C24H29KO, M = 372.59, colourless block, T = 123
˚
1 K, monoclinic, space group P21/n, a = 14.092(2) A, b = 10.4839(15)
˚
Sm–C(ring) average distance of 2.8038 A is consistent with those
◦
3
˚
˚
˚
A, c = 15.135(2) A, b = 109.3371(11) , V = 2110.0(6) A , Z = 4, 22242
reflections measured, 4815 unique (Rint = 0.031), R1 = 0.0642 ([I > 2s(I)],
wR2 = 0.2101 (all data), GOF = 1.013. CCDC 846172. Crystal data for 1:
C48H58O2Sm, M = 817.38, purple plate, T = 123 1 K, monoclinic, space
11
˚
for divalent Sm(Cp*)2 complexes (2.79–2.86 A). Both of the
naphthyl substituents in 2 are oriented toward the Sm(II) centre to
fill the coordination sphere in the solid state. It should be noticed
that Sm(II) displays short contacts with one of the carbon atoms
of the naphthyl substituent (Sm ◊ ◊ ◊ C12 = 3.015(4), Sm ◊ ◊ ◊ C32 =
˚
˚
˚
group P21/a, a ◦= 15.8327(15) A, b = 14.1300(13) A, c = 18.3007(18) A,
3
˚
b = 104.2865(5) , V = 3967.5(7) A , Z = 4, 42712 reflections measured,
8979 unique (Rint = 0.033), R1 = 0.0341 [I > 2s(I)], wR2 = 0.0735 (all
data), GOF = 1.084. CCDC 846173. Crystal data for 2: C40H42Sm, M =
673.17, dark green block, T = 123 1 K, monoclinic, space group P21/n,
1
˚
2.925(5) A). The Sm(II) ◊ ◊ ◊ C(h -arene) distances in 2 are com-
1
parable to those reported for the Sm(II) ◊ ◊ ◊ C(alkene or h -arene)
◦
˚
˚
˚
a = 15.9579(17) A, b = 12.1851(12) A, c = 16.6516(18) A, b = 109.624(3) ,
distances found in [Sm(CpOlefin)2] (3.004(3) and 3.249(4) A) and
5
˚
3
˚
V = 3049.8(6) A , Z = 4, 32774 reflections measured, 6923 unique (Rint
=
[Sm(Cp*)(BPh4)(THF)] (2.933(4) A).13 The solid-state structure of
˚
0.047), R1 = 0.0499 [I > 2s(I)], wR2 = 0.1351 (all data), GOF = 1.096.
CCDC 846174.
2 suggests that the unusual metal–p-arene (naphthyl) interactions
play an important role in the easy removal of the coordinated THF
from 1 and the formation of 2.
1 (a) S. Harder, Coord. Chem. Rev., 1998, 176, 17; (b) P. Jutzi and G.
Reumann, J. Chem. Soc., Dalton Trans., 2000, 2237; (c) W. J. Evans
and B. L. Davis, Chem. Rev., 2002, 102, 2119; (d) Comprehensive
organometallic chemistry III, ed. R. H. Crabtree and D. M. P. Mingos,
Elsevier, 2007, Vol. 4.
2 (a) H. Nakai, M. Hatake, Y. Miyano and K. Isobe, Chem. Commun.,
2009, 2685; (b) T. Yatabe, H. Nakai, K. Nozaki, T. Yamamura and K.
Isobe, Organometallics, 2010, 29, 2390.
3 (a) W. J. Evans, I. Bloom, W. E. Hunter and J. L. Atwood, J. Am.
Chem. Soc., 1981, 103, 6507; (b) W. J. Evans, L. A. Hughes and T.
P. Hanusa, J. Am. Chem. Soc., 1984, 106, 4270; (c) W. J. Evans, J. W.
Grate, H. W. Choi, I. Bloom, W. E. Hunter and J. L. Atwood, J. Am.
Chem. Soc., 1985, 107, 941; (d) W. J. Evans, G. Kociok-Ko¨hn, S. E.
Foster, J. W. Ziller and R. J. Doedens, J. Organomet. Chem., 1993, 444,
61.
4 The preparation of [Sm(Cp*)2] from [Sm(Cp*)2(OEt2)] has been
reported: D. J. Berg, C. J. Burns, R. A. Andersen and A. Zalkin,
Organometallics, 1989, 8, 1865.
5 W. J. Evans, J. M. Perotti, J. C. Brady and J. W. Ziller, J. Am. Chem.
Soc., 2003, 125, 5204.
6 W. J. Evans, S. L. Gonzales and J. W. Ziller, J. Am. Chem. Soc., 1994,
116, 2600.
7 (a) M. Bjo¨rgvinsson, S. Halldorsson, I. Arnason, J. Magull and D.
Fenske, J. Organomet. Chem., 1997, 544, 207; (b) F. Cicogna, M.
Colonna, J. L. Houben, G. Ingrosso and F. Marchetti, J. Organomet.
Chem., 2000, 593–594, 251; (c) M. Carano, F. Cicogna, I. D’Ambra, B.
Gaddi, G. Ingrosso, M. Marcaccio, D. Paolucci, F. Paolucci, C. Pinzino
and S. Roffia, Organometallics, 2002, 21, 5583; (d) S. K. S. Tse, T. Guo,
H. H.-Y. Sung, I. D. Williams, Z. Lin and G. Jia, Organometallics, 2009,
28, 5529; (e) S. K. S. Tse, W. Bai, H. H.-Y. Sung, I. D. Williams and G.
Jia, Organometallics, 2010, 29, 3571.
Fig. 4 ORTEP drawing of 2 with 50% probability ellipsoids. Front
view (left) and top view (right). Hydrogen atoms are omitted for clarity.
˚
Selected bond distances (A) and angles (deg): Sm–C(ring) average: 2.8038,
Sm–ringcen(1) = 2.533, Sm–ringcen(2) = 2.529, Sm ◊ ◊ ◊ C12 = 3.015(4),
Sm ◊ ◊ ◊ C32 = 2.925(5); ringcen(1)–Sm–ringcen(2) = 138.05(6), C12–Sm–C32 =
102.02(13). “ringcen” indicates the centroid of the five membered ring.
In conclusion, we have unequivocally demonstrated that the
tethered naphthyl unit of CpNaph can function as both an interact-
ing and non-interacting group with the Sm(II) centre. In the present
system, the solvent effect on the THF coordination is controlled by
the proximal effect on the metal–p-arene interaction (vice versa).
Thus, the newly prepared CpNaph ligand provides a new strategy to
construct novel solvent-responsive organometallic compounds. In
addition, the photofunctional naphthyl unit of CpNaph may bring
out a novel photoreactivity. In this line, further work is currently
in progress.
8 P. Jutzi, T. Heidemann, B. Neumann and H. G. Stammler, Synthesis,
1992, 1096.
9 W. J. Evans, J. C. Brady, C. H. Fujimoto, D. G. Giarikos and J. W. Ziller,
J. Organomet. Chem., 2002, 649, 252.
1
10 In order to obtain information on the Sm–THF and Sm–C(h -arene)
1
interaction in solution, the variable temperature H NMR spectra of
1 and 2 were measured at -80 to 100 ◦C in toluene-d8. The obtained
results are complicated by the paramagnetic nature of Sm(II) and are
not suitable for detailed analysis.
Acknowledgements
11 W. J. Evans and D. K. Drummond, J. Am. Chem. Soc., 1989, 111,
3329.
This work was supported by grants-in-aid: 21021011, 21750059
and 23655054, the Global COE Program “Science for Future
Molecular Systems”, and the World Premier International Re-
search Centre Initiative (WPI Program) from the Ministry of Edu-
12 Inorganic Chromotropism, ed. Y. Fukuda, Kodansha/Springer, Tokyo,
2007, pp. 18–27 and pp. 143–198.
13 W. J. Evans, T. M. Champagne and J. W. Ziller, Organometallics, 2007,
26, 1204.
356 | Dalton Trans., 2012, 41, 354–356
This journal is
The Royal Society of Chemistry 2012
©