10.1002/anie.201812937
Angewandte Chemie International Edition
COMMUNICATION
[1] For selected examples, see: a) J. A. Pfefferkorn, J. Lou, M. L. Minich, K. J.
Filipski, M. He, R. Zhou, S. Ahmed, J. Benbow, A.-G. Perez, M. Tu, J.
Litchfield, R. Sharma, K. Metzler, F. Bourbonais, C. Huang, D. A. Beebe,
P. J. Oates, Bioorg. Med. Chem. Lett. 2009, 19, 3247; b) J. A. D. Good, J.
Silver, C. Núñez-Otero, W. Bahnan, K. S. Krishnan, O. Salin, P. Engström,
R. Svensson, P. Artursson, Å. Gylfe, S. Bergström, F. Almqvist, J. Med.
Chem. 2016, 59, 2094; c) S. H. Reich, P. A. Sprengeler, G. G. Chiang, J.
R. Appleman, J. Chen, J. Clarine, B. Eam, J. T. Ernst, Q. Han, V. K. Goel,
E. Z. R. Han, V. Huang, I. N. J. Hung, A. Jemison, K. A. Jessen, J. Molter,
D. Murphy, M. Neal, G. S. Parker, M. Shaghafi, S. Sperry, J. Staunton, C.
R. Stumpf, P. A. Thompson, C. Tran, S. E. Webber, C. J. Wegerski, H.
Zheng, K. R. Webster, J. Med. Chem. 2018, 61, 3516.
tetrachlorophthalimido (TCPT) groups were twisted to parallel
with the carbene, blocking both the Re and Si faces. Therefore,
the origin of enantioselectivity cannot be revealed from the face
preference of Rh-carbene.18 We then calculated full potential
energy surface (Figure S3). The nucleophilic attack of pyridine to
carbene (TS1) is irreversible and supposed to be the
enantioselectivity determining step. A systematic conformation
search (Figure S4) was conducted to obtain possible
conformations. Rotation of three dihedral angles, Ψ1, Ψ2 and Ψ3
leads to 8 conformations (Figure S4 and S5). According to the
Boltzmann distribution and Eyring equation, the theoretical ee
was calculated to be 99% favoring the S-isomer, which is in good
agreement with our observations. The most stable structures
TS1L2-S-cf1 and TS1L2-R-cf5 were depicted in Figure 2b. The π-
π interaction between pyridine and TCPT in TS1L2-S-cf1 (~3.78
Å) is stronger than that in TS1L2-R-cf5 (~4.09 Å). Moreover,
TS1L2-S-cf1 also possesses a relatively stronger CH-π interaction.
To sum up, the stronger π-π interaction and CH-π interaction are
responsible for the enantioselectivity.
[2] a) H. Mayr, M. Breugst, A. R. Ofial, Angew. Chem. Int. Ed. 2011, 50, 6470;
b) M. Breugst, H. Mayr, J. Am. Chem. Soc. 2010, 132, 15380.
[3]
a) Y.-Q. Fang, M. M. Bio, K. B. Hansen, M. S. Potter, A. Clausen, J. Am.
Chem. Soc. 2010, 132, 15525; b) X. Hao, Z. Xu, H. Lu, X. Dai, T. Yang,
X. Lin, F. Ren, Org. Lett. 2015, 17, 3382.
[4]
a) L.-J. Cheng, A. P. N. Brown, C. J. Cordier, Chem. Sci. 2017, 8, 4299;
b) C. S. Yeung, T. H. H. Hsieh, V. M. Dong, Chem. Sci. 2011, 2, 544; c)
S. Pan, N. Ryu, T. Shibata, Org. Lett. 2013, 15, 1902; d) N. A. Remero,
B. M. Klepser, C. E. Anderson, Org. Lett. 2012, 14, 874; e) A. Rodrigues,
E. E. Lee, R. A. Batey, Org. Lett. 2010, 12, 260.
[5]
[6]
C. Li, M. Kähny, B. Breit, Angew. Chem. Int. Ed. 2014, 53, 13780.
X. Zhang, Z.-P. Yang, L. Huang, S.-L. You, Angew. Chem. Int. Ed. 2015,
54, 1873.
(a)
[7]
a) C. Zhu, G. Xu, Sun, J. Angew. Chem. Int. Ed. 2016, 55, 11867; b) K.
Liu, G. Xu, J. Sun, Chem. Sci. 2018, 9, 634; c) K. Wang, P. Chen, D. Ji,
X. Zhang, G. Xu, J. Sun, Angew. Chem. Int. Ed. 2018, 57, 12489.
J. Busch-Petersen, E. J. Corey, Org. Lett. 2000, 2, 1641.
eclipsed
1.8(2.5)
Int1L2-a
staggered
0.0(0.0)
Int1L2
[8]
[9]
(b)
D. Huang, G. Xu, S. Peng, J. Sun, Chem. Commun. 2017, 53, 3197.
Weak CH- interaction
[10] For selected examples, see: a) X. Guo, W. Hu, Acc. Chem. Res. 2013,
46, 2427; b) Z. Li, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 396; c)
H. Qiu, M. Li, L.-Q. Jiang, F.-P. Lv, L. Zan, C.-W. Zhai, M. P. Doyle, W.
Hu, Nat. Chem. 2012, 4, 733; d) D. P. Hari, J. Waser, J. Am. Chem. Soc.
2016, 138, 2190; e) W. Yuan, L. Eriksson, K. J. Szabó, Angew. Chem.
Int. Ed. 2016, 55, 8410; f)Z. Zhang, Z. Sheng, W. Yu, G. Wu, R. Zhang,
W.-D. Chu, Y. Zhang, J. Wang, Nat. Chem. 2017, 9, 970; g) Y. Huang,
X. Li, X. Wang, Y. Yu, J. Zheng, W. Wu, H. Jiang, Chem. Sci. 2017, 8,
7047; h) D. P. Hari, J. Waser, J. Am. Chem. Soc. 2017, 139, 8420; i) B.
Xu, U. K. Tambar, Angew. Chem. Int. Ed. 2017, 56, 9868; j) C. Pan, W.
Guo, Z. Gu, Chem. Sci. 2018, 9, 5850; k) Z. Liu, P. Sivaguru, G. Zanoni,
E. A. Anderson, X. Bi, Angew. Chem. Int. Ed. 2018, 57, 8927.
[11] a) J. Day, B. McKeever-Abbas, J. Dowden, Angew. Chem. Int. Ed. 2016,
55, 5809; b) T. Douglas, A. Pordea, J. Dowden, Org. Lett. 2017, 19, 6396;
c) D. Zhang, L. Lin, J. Yang, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2018,
57, 12323.
3.06
Strong CH- interaction
4.09
Weak -
interaction
2.81
- interaction
3.50
3.78
- interaction
4.4 (-13.0)
TS1L2-R-cf5
1.7 (-14.7)
TS1L2-S-cf1
3.54
- interaction
Figue 2. DFT calculation on the origin of enantioselectivity
In conclusion, we have developed an unprecedented protocol
for the catalytic synthesis of N-substituted 2-pyridones from O-
acyl 2-pyridines and diazo compounds, which proceeded through
rhodium-catalyzed pyridinium ylide formation and sequential 1,4-
acyl migratory rearrangement under mild reaction conditions.
Typically, the reaction is amenable to various carbene precursors.
Furthermore, the asymmetric reaction has been realized in the
presence of chiral rhodium complexes. DFT calculation disclosed
the reaction mechanism and the origin of chiral induction.
[12] For selected examples on CADA, see: a) C.-X. Zhuo, W. Zhang, S.-L.
You, Angew. Chem. Int. Ed. 2012, 51, 12662; b) C. Zheng, S.-L. You,
Chem 2016, 1, 830; c) R.-Q. Xu, Q. Gu, S.-L. You, Angew. Chem. Int.
Ed. 2017, 56, 7252; d) Z.-L. Xia, C. Zheng, S.-G. Wang, S.-L. You,
Angew. Chem. Int. Ed. 2018, 57, 2653; e) T. Hashimoto, Y. Shimazaki,
Y. Omatsu, K. Maruoka, Angew. Chem. Int. Ed. 2018, 57, 7200.
[13] CCDC 1873268 (6), 1873269 (36) and 1873270 (64).
[14] M. Yamawaki, H. Tsutsui, S. Kitagaki, M. Anada, S. Hashimoto,
Tetrahedron Lett. 2002, 43, 9561.
Acknowledgements
[15] H. M. L. Davies, P. R. Bruzinski, D. H. Lake, N. Kong, M. J. Fall, J. Am.
Chem. Soc. 1996, 118, 6897.
[16] C. Werlé, R. Goddard, P. Philipps, C. Farès, A. Fürstner, Angew. Chem.
Int. Ed. 2016, 55, 10760.
We thank the NNSFC (21572024, 21572192), Shenzhen STIC
(JCYJ20170412150343516), and the Jiangsu Key Laboratory of
Advanced Catalytic Materials and Technology (BM2012110) for
their financial support.
[17] F. G. Adly, M. G. Gardiner, A. Ghanem, Chem. Eur. J. 2016, 22, 3447.
[18] K. Liao, T. C. Pickel, V. Boyarskikh, J. Bacsa, D. G. Musaev, H. M. L.
Davies, Nature 2017, 551, 609.
Keywords: dearomatization • carbene • rearrangement• diazo
compounds• asymmetric catalysis
This article is protected by copyright. All rights reserved.