S. Serra et al. / Bioorg. Med. Chem. Lett. 22 (2012) 258–261
261
33. General procedure for the preparation of 3-aryl-4-hydroxycoumarins: a degassed
solution of appropriated phenyl boronic acid (2.2 equiv) and P(t-But)3 (27 mL)
in DME and H2O (4:1, 12.5 mL) was added to a mixture of iodonium ylide
(0.55 mmol), LiOH/H2O (3 equiv) and Pd(OAc)2 (6.2 mg) under argon at room
temperature. After being stirred at the same temperature for 24–48 h. The
resulting mixture was purified by FC (hexane/ethyl acetate, 7:3) to give the
desired compound.
(PGIDIT09CSA030203PR and 10PXIB203303PR). This work was also
partially supported by MIUR and Cagliari University (National
Project ‘‘Stereoselezione in Sintesi Organica metodologie ed
Applicazioni’’) and by CINMPIS and FIRB. S.S. thanks Regione Sarde-
gna for the PhD grant (PR-MAB-A2009-613). M.J.M. thanks to Fun-
dação para a Ciência e Tecnologia for the PhD grant (SFRH/BD/
61262/2009). S.V.R. thanks to Ministerio de Educación y Ciencia
for a PhD grant (AP2008-04263).
3-(30-Chloro-40-methoxyphenyl)-4-hydroxycoumarin (5). It was obtained with
yield 80%. Mp: 298–300 °C. 1H NMR (DMSO-d6) d (ppm): 3.94 (s, 3H, OCH3),
7.21 (s, 1H, H20), 7.28–7.49 (m, 3H, H6, H8, H50), 7.56–7.83 (m, 2H, H7, H60),
7.98 (d, 1H, H5, J = 7.6), 15.7 (s, 1H, OH). 13C NMR (DMSO-d6) d (ppm): 56.2,
105.0, 112.8, 116.6, 116.9, 120.7, 124.2, 124.4, 125.6, 131.5, 132.7, 132.8, 152.7,
154.3, 161.0, 162.3. MS m/z (%): 302 (M+, 100), 182 (64), 121 (95). Anal. Calcd
for C16H11ClO4: C, 63.48; H, 3.66. Found: C, 63.45; H, 3.69.
References and notes
3-(30-Chloro-40-methoxyphenyl)-4-hydroxy-6-methylcoumarin (6). It was
obtained with yield 80%. Mp: 301–304 °C. 1H NMR (DMSO-d6) d (ppm): 2.45
(s, 3H, CH3), 3.90 (s, 3H, OCH3), 7.14–7.24 (m, 1H, H8), 7.25–7.37 (m, 3H, H7,
H20, H50), 7.40–7.52 (m, 1H, H60), 7.80 (s, 1H, H5), 15.4 (s, 1H, OH). 13C NMR
(DMSO-d6) d (ppm): 20.9, 56.6, 105.0, 112.8, 116.4, 120.8, 123.8, 125.6, 129.0,
131.5, 132.7, 133.6, 133.6, 150.8, 154.3, 160.9, 162.4. MS m/z (%): 316 (M+, 59),
182 (80), 135 (100), 97 (36), 83 (37), 71 (51), 57 (91). Anal. Calcd for
1. Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.
E.; Mattevi, A. J. Med. Chem. 2007, 50, 5848.
2. Novaroli, L.; Daina, A.; Favre, E.; Bravo, J.; Carotti, A.; Leonetti, F.; Catto, M.;
Carrupt, P.; Reist, M. J. Med. Chem. 2006, 49, 6264.
3. De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 12684.
4. Binda, C.; Li, M.; Hubálek, F.; Restelli, N.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 9750.
5. Ma, J.; Yoshimura, M.; Yamashita, E.; Nakagawa, A.; Ito, A.; Tsukihara, T. J. Mol.
Biol. 2004, 338, 103.
6. Weyler, W.; Hsu, Y. P. P.; Breakefield, X. O. Pharmacol. Ther. 1990, 47, 391.
7. Youdim, M. B. H.; Fridkin, M.; Zheng, H. J. Neural Transm. 2004, 111, 1455.
8. Cesura, A. M.; Pletscher, A. Prog. Drug Res. 1992, 38, 171.
9. Guay, D. R. Am. J. Geriatr. Pharmacother. 2006, 4, 330.
10. Riederer, P.; Danielczyk, W.; Grunblatt, E. Neurotoxicology 2004, 25, 271.
11. Saura, J.; Luque, J. M.; Cesura, A. M.; Da Prada, M.; Chan-Palay, V.; Huber, G.;
Loffler, J.; Richards, J. G. Neuroscience 1994, 62, 15.
12. Borges, F.; Roleira, F.; Milhazes, N.; Uriarte, E.; Santana, L. Front. Med. Chem.
2009, 4, 23.
13. Murray, R. D. H. Prog. Chem. Org. Nat. Prod. 2002, 83, 1.
14. Nowakowska, Z. Eur. J. Med. Chem. 2007, 42, 125.
15. Kabeya, L.; Marchi, A.; Kanashiro, A.; Lopes, N.; Silva, C.; Pupo, M.; Lucisano-
Valim, Y. Bioorg. Med. Chem. 2007, 15, 1516.
16. Belluti, F.; Fontana, G.; Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Bioorg.
Med. Chem. 2010, 18, 3543.
17. Roussaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D. J.; Hamilakis, S. Bioorg.
Med. Chem. Lett. 2010, 20, 3889.
C17H13ClO4: C, 64.46; H, 4.14. Found: C, 64.46; H, 4.09.
6-Chloro-3-(30-chloro-40-methoxyphenyl)-4-hydroxycoumarin (7). It was
obtained with yield 62%. Mp: 321–323 °C. 1H NMR (DMSO-d6) d (ppm): 3.90
(s, 3H, OCH3), 7.0–7.57 (m, 3H, H8, H20, H50), 7.60–7.84 (m, 2H, H7, H60), 8.0 (s,
1H, H5), 15.7 (s, 1H, OH). 13C NMR (DMSO-d6) d (ppm): 56.8, 113.0, 119.0,
121.1, 123.6, 125.5, 128.7, 131.7, 132.6, 132.8, 135.2, 136.1, 151.5, 154.6, 160.2,
162.2. MS m/z (%): 338 (M+, 59), 336 (100), 182 (75), 155 (88), 142 (26), 57 (31).
Anal. Calcd for C16H10Cl2O4: C, 57.0; H, 2.99. Found: C, 57.05; H, 3.05.
34. Determination of human monoamine oxidase (hMAO) isoform activity. The
effects of the tested compounds on hMAO isoform enzymatic activity were
evaluated by a fluorimetric method. Briefly, 0.1 mL of sodium phosphate buffer
(0.05 M, pH 7.4) containing the tested drugs in several concentrations and
adequate amounts of recombinant hMAO-A or hMAO-B required and adjusted
to obtain in our experimental conditions the same reaction velocity [165 pmol
of p-tyramine/min (hMAO-A: 1.1
tyramine oxidized to p-hydroxyphenylacetaldehyde/min/mg protein; hMAO-
B: 7.5 g protein; specific activity: 22 nmol of p-tyramine transformed/min/mg
lg protein; specific activity: 150 nmol of p-
l
protein)] were placed in the dark fluorimeter chamber and incubated for
15 min at 37 °C. The reaction was started by adding (final concentrations)
200
tyramine. The production of H2O2 and, consequently, of resorufin was
quantified at 37 °C in multidetection microplate fluorescence reader
l
M AmplexÒ Red reagent, 1 U/mL horseradish peroxidase and 1 mM p-
18. Ostrov, D. A.; Hernández Prada, J. A.; Corsino, P. E.; Finton, K. A.; Le, N.; Rowe, T.
C. Antimicrob. Agents Chemother. 2007, 51, 3688.
a
(FLX800™, Bio-TekÒ Instruments, Inc., Winooski, VT, USA) based on the
fluorescence generated (excitation, 545 nm, emission, 590 nm) over a 15 min
period, in which the fluorescence increased linearly. Control experiments were
carried out simultaneously by replacing the tested drugs with appropriate
dilutions of the vehicles. In addition, the possible capacity of the above tested
drugs for modifying the fluorescence generated in the reaction mixture due to
non-enzymatic inhibition (e.g., for directly reacting with AmplexÒ Red reagent)
was determined by adding these drugs to solutions containing only the
AmplexÒ Red reagent in a sodium phosphate buffer. The specific fluorescence
emission (used to obtain the final results) was calculated after subtraction of
the background activity, which was determined from vials containing all
components except the hMAO isoforms, which were replaced by a sodium
phosphate buffer solution.
19. Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.;
Hong, S. C.; Tsay, S.-C.; Hsu, M.-H.; Hwu, J. R. J. Med. Chem. 2009, 52, 1486.
20. Kostova, I. Curr. HIV Res. 2006, 4, 347.
21. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Bizzarri, B.; Granese, A.;
Carradori, S.; Yanez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. J. Med. Chem. 2009, 52,
1935.
22. Secci, D.; Carradori, S.; Bolasco, A.; Chimenti, P.; Yáñez, M.; Ortuso, F.; Alcaro, S.
Eur. J. Med. Chem. 2011, 46, 4846.
23. Matos, M. J.; Viña, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.;
Uriarte, E. Bioorg. Med. Chem. Lett. 2009, 19, 3268.
24. Matos, M. J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E. Bioorg. Med.
Chem. Lett. 2009, 19, 5053.
25. Matos, M. J.; Viña, D.; Janeiro, P.; Borges, F.; Santana, L.; Uriarte, E. Bioorg. Med.
Chem. Lett. 2010, 20, 5157.
26. Delogu, G.; Picciau, C.; Ferino, G.; Quezada, E.; Podda, G.; Uriarte, E.; Viña, D.
Eur. J. Med. Chem. 2011, 49, 1147.
27. Hwang, S. L.; Yen, G. C. J. Agric. Food Chem. 2009, 57, 2576.
28. Su, M. Y.; Huang, H. Y.; Li, L.; Lu, Y. H. J. Agric. Food Chem. 2011, 59, 521.
29. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini,
M.; Melchiorre, C. J. Med. Chem. 2008, 51, 347.
35. Yáñez, M.; Fraiz, N.; Cano, E.; Orallo, F. Biochem. Biophys. Res. Comm. 2006, 344,
688.
36. Matos, M. J.; Terán, C.; Pérez-Castillo, Y.; Uriarte, E.; Santana, L.; Viña, D. J. Med.
37. Viña, D.; Matos, M. J.; Yáñez, M.; Santana, L.; Uriarte, E. Med. Chem. Comm.
38. Schrödinger Suite 2011 Protein Preparation Wizard; Epik version 2.2,
Schrödinger, LLC, New York, NY, 2011; Impact version 5.7, Schrödinger, LLC,
New York, NY, 2011; Prime version 3.0, Schrödinger, LLC, New York, NY, 2011.
39. LigPrep, version 2.5, Schrödinger, LLC, New York, NY, 2011.
40. Schrödinger Suite 2011 QM-Polarized Ligand Docking protocol; Glide version
5.7, Schrödinger, LLC, New York, NY, 2011; Jaguar version 7.8, Schrödinger, LLC,
New York, NY, 2011; QSite version 5.7, Schrödinger, LLC, New York, NY, 2011.
41. Glide, version 5.7, Schrödinger, LLC, New York, NY, 2011.
30. Desideri, N.; Bolasco, A.; Fioravanti, R.; Proietti Monaco, L.; Orallo, F.; Yañez,
M.; Ortuso, F.; Alcaro, S. J. Med. Chem. 2011, 54, 2155.
31. Zhu, Q.; Wu, J.; Fathi, R.; Yang, Z. Org. Lett. 2002, 4, 3333.
32. General procedure for the preparation of 3-phenyliodonium coumarinates:
iodobenzene diacetate (10 mmol) was suspended in a solution of Na2CO3
(10 mmol) in water (100 mL) and was stirred for 30 min at room temperature.
To this solution was added a mixture of the corresponding 4-hydroxycoumarin
(10 mmol) and Na2CO3 (10 mmol) in water (100 mL). After the mixture was
stirred at room temperature for 14 h, the precipitate was collected by filtration,
washed with water (5 ꢁ 20 mL) and dried under vacuum. The resulting white
solid was used without further purification.
42. Jaguar, version 7.8, Schrödinger, LLC, New York, NY, 2011.
43. MacroModel, version 9.9, Schrödinger, LLC, New York, NY, 2011.