ORGANIC
LETTERS
2012
Vol. 14, No. 3
728–731
Ruthenium-Catalyzed Oxidative CÀH
Alkenylations of Anilides and Benzamides
in Water
Lutz Ackermann,* Lianhui Wang, Ratnakancana Wolfram, and Alexander V. Lygin
€
Institut fu€r Organische und Biomolekulare Chemie, Georg-August-Universitat,
€
Tammannstrasse 2, 37077 Gottingen, Germany
Received December 6, 2011
ABSTRACT
A cationic ruthenium(II) complex enabled efficient oxidative alkenylations of anilides in water as a green solvent and proved applicable to
double CÀH bond functionalizations of (hetero)aromatic amides with ample scope. Detailed studies provided strong support for a change of
ruthenation mechanism in the two transformations, with an irreversible metalation as the key step in cross-dehydrogenative alkenylations of
benzamides.
Direct oxidative alkenylations of (hetero)arenes via two-
fold CÀH bond cleavages are highly attractive tools for
atom- and step-economical organic syntheses, because they
avoid the preparation and use of prefunctionalized starting
materials.1 Based on early reports by Fujiwara and
Moritani2,3 a wealth of palladium- and rhodium-catalyzed
oxidative alkenylations were developed.4 Conversely, less
expensive ruthenium complexes were as of yet underutilized
for cross-dehydrogenative alkenylations of (hetero)arenes,
with notable exceptions being accomplished only very re-
cently.5,6 Despite this significant recent progress, ruthenium-
catalyzed direct oxidative alkenylations continue to be
limited to (hetero)arenes bearing electron-withdrawing
directing groups.5,6 Given the importance of anilines as
key intermediates for the preparation of bioactive
(1) Selected recent reviews on metal-catalyzed CÀH bond functio-
nalizations: (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc.
Rev. 2011, 40, 5068–5083. (b) Yeung, C. S.; Dong, V. M. Chem. Rev.
2011, 111, 1215–1292. (c) Willis, M. C. Chem. Rev. 2010, 110, 725–748.
(d) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503–
4513. (e) Yoo, W.-J.; Li, C.-J. Top. Curr. Chem. 2010, 292, 281–302. (f)
Daugulis, O. Top. Curr. Chem. 2010, 292, 57–84. (g) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (h)
Fagnou, K. Top. Curr. Chem. 2010, 292, 35–56. (i) Giri, R.; Shi, B.-F.;
Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242–
3272. (j) Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed.
2009, 48, 9792–9826. (k) Thansandote, P.; Lautens, M. Chem.;Eur. J.
2009, 15, 5874–5883 and references cited therein.
(5) (a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153–4155.
For oxidative annulations from our laboratories, see: (b) Ackermann,
L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379–
6382. (c) Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13,
3278–3281. (d) Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548–
6551. (e) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci. 2012, 3, 177–
ꢀ
180. See also: (f) Ackermann, L.; Novak, P.; Vicente, R.; Pirovano, V.;
Potukuchi, H. K. Synthesis 2010, 2245–2253.
(6) (a) Hashimoto, Y.; Ueyama, T.; Fukutani, T.; Hirano, K.; Satoh,
T.; Miura, M. Chem. Lett. 2011, 40, 1165–1166. (b) Arockiam, P. B.;
Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2011, 13,
3075–3078. (c) Padala, K.; Jeganmohan, M. Org. Lett. 2011, 13, 6144–
6147. (d) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2011, 13, 706–708. (e) Kwon, K.-H.; Lee, D. W.;
Yi, C. S. Organometallics 2010, 29, 5748–5750. (f) Weissman, H.; Song,
X.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 337–338. For illustrative
examples of ruthenium-catalyzed CÀH bond alkylations, see: (g) Murai,
S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.;
(2) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119–1122.
(3) For early studies on rhodium-catalyzed oxidative alkenylations,
see: (a) Matsumoto, T.; Yoshida, H. Chem. Lett. 2000, 29, 1064–1065.
(b) Matsumoto, T.; Periana, R. A.; Taube, D. J.; Yoshida, H. J. Catal.
2002, 206, 272–280.
ꢀ
(4) Selected reviews: [Pd]: (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc.
Chem. Res. 2001, 34, 633–639. (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr.
J. Chem. 2010, 50, 605–616. [Rh]: (c) Satoh, T.; Miura, M. Chem.;Eur.
J. 2010, 16, 11212–11222.
Chatani, N. Nature 1993, 366, 529–531. (h) Ackermann, L.; Novak, P.;
Vicente, R.; Hofmann, N. Angew. Chem., Int. Ed. 2009, 48, 6045–6048.
(i) Ackermann, L.; Novak, P. Org. Lett. 2009, 11, 4966–4969. (j) Lee, D.-H.;
ꢀ
Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613–1616.
r
10.1021/ol203251s
Published on Web 01/20/2012
2012 American Chemical Society