Crystal Structure Determination
Baerends, Inorg. Chem., 2009, 48, 11909–11920; (g) Y. Ohki, A. Murata,
M. Imada and K. Tatsumi, Inorg. Chem., 2009, 48, 4271–4273; (h) M.
Oishi and H. Suzuki, Inorg. Chem., 2009, 48, 2349–2351; (i) L. D. Field,
R. W. Guest and P. Turner, Inorg. Chem., 2010, 49, 9086–9093; (j) R. L.
Shook and A. S. Borovik, Inorg. Chem., 2010, 49, 3646–3660; (k) P. M.
Polestshuk and T. V. Magdesieva, Inorg. Chem., 2010, 49, 3370–3386;
(l) G.-L. Wang, Y.-J. Lin, H. Berke and G.-X. Jin, Inorg. Chem., 2010,
49, 2193–2201; (m) M.-E. Moret, S. F. Keller, J. C. Slootweg and P.
Chen, Inorg. Chem., 2009, 48, 6972–6978; (n) A. Jana, I. Objartel, H.
W. Roesky and D. Stalke, Inorg. Chem., 2009, 48, 7645–7649.
3 (a) S.-F. Zhu, X.-G. Song, Y. Li, Y. Cai and Q.-L. Zhou, J. Am. Chem.
Soc., 2010, 132, 16374–16376; (b) Z. Yang and M. B. Hall, J. Am. Chem.
Soc., 2010, 132, 120–130; (c) Y. Liang, H. Zhou and Z.-X. Yu, J. Am.
Chem. Soc., 2009, 131, 17783–17785; (d) T. H. Parsell, M.-Y. Yang and
A. S. Borovik, J. Am. Chem. Soc., 2009, 131, 2762–2763; (e) S. Sarkar,
S. Li and B. B. Wayland, J. Am. Chem. Soc., 2010, 132, 13569–13571;
(f) K. J. Humphreys, L. M. Mirica, Y. Wang and J. P. Klinman, J. Am.
Chem. Soc., 2009, 131, 4657–4663; (g) W. Gao, J. A. Keith, J. Anton and
T. Jacob, J. Am. Chem. Soc., 2010, 132, 18377–18385; (h) J. Li, Y. Shito
and K. Yoshizawa, J. Am. Chem. Soc., 2009, 131, 13584–13585; (i) D.
M. Spasyuk and D. Zargarian, Inorg. Chem., 2010, 49, 6203–6213.
4 Z. Huang, J. Zhou and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132,
11458–11460.
5 A. Jana, C. Schulzke and H. W. Roesky, J. Am. Chem. Soc., 2009, 131,
4600–4601.
6 A. Jana, H. W. Roesky, C. Schulzke and P. P. Samuel, Organometallics,
2009, 28, 6574–6577.
7 R. Azhakar, S. P. Sarish, G. Tavcˇar, H. W. Roesky, J. Hey, D. Stalke and
D. Koley, Inorg. Chem., 2011, 50, 3028–3036.
8 (a) Y. Xiong, S. Yao and M. Driess, Organometallics, 2010, 29, 987–
990; (b) Y. Xiong, S. Yao and M. Driess, Chem. Eur. J., 2009, 15,
5545–5551; (c) Y. Xiong, S. Yao and M. Driess, Organometallics, 2009,
28, 1927–1933.
Suitable single crystals for X-ray structural analysis of 1, 2 and
3 were mounted at low temperature in inert oil under an argon
atmosphere by applying the X-Temp2 device.16 The data of 1,
2 and 3 were collected at 100 K on a Bruker D8 three circle
diffractometer equipped with a SMART APEX II CCD detector
and an INCOATEC Mo microsource with INCOATEC Quazar
mirror optics.17 The data were integrated with SAINT18 and an
empirical absorption correction with SADABS19 was applied.
The structures were solved by direct methods (SHELXS-97) and
refined against all data by full-matrix least-squares methods on
F2 (SHELXL-97).20 All non hydrogen atoms were refined with
anisotropic displacement parameters. The hydrogen atoms were
refined isotropically on calculated positions using a riding model
with their Uiso values constrained to 1.5Ueq of their pivot atoms
for terminal sp3 carbon atoms and 1.2 times for all other carbon
atoms. The positions of hydrogen atoms located at the silicon
atoms were taken from the Fourier difference map. Their Uiso
value was constrained to be the 1.5Ueq of the silicon atom in the
case of 2, 1.2Ueq in the case of 3 and refined freely in the case of 1.
The site occupation factor for several lattice n-hexane molecules
located on an inversion center in the unit cell was refined in the
case of 1 leading to non-integer numbers in the empirical formula.
Conclusions
9 (a) Y. Xiong, S. Yao, R. Mu¨ller, M. Kaupp and M. Driess, Nat. Chem.,
2010, 2, 577–580; (b) S. Yao, Y. Xiong, M. Brym and M. Driess, J. Am.
Chem. Soc., 2007, 129, 7268–7269.
10 (a) A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C.
Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349–1356; (b) V.
Chandrasekhar, R. Azhakar, T. Senapati, P. Thilagar, S. Ghosh, S.
Verma, R. Boomishankar, A. Steiner and P. Ko¨gerler, Dalton Trans.,
2008, 1150–1160.
In summary, we have demonstrated the double N–H bond
activation by the reaction of NHSi with substituted hydrazines
leading to compounds 1–4 in high yield where each silicon is five
coordinate. The driving force for this reaction is the oxidative
addition at the silicon(II) centers to yield the five coordinate
silicon(IV) products.
11 (a) I. Kalikhman, E. Kertsnus-Banchik, B. Gostevskii, N. Kocher,
D. Stalke and D. Kost, Organometallics, 2009, 28, 512–516; (b) I.
Kalikhman, B. Gostevskii, E. Kertsnus, S. Deuerlein, D. Stalke, M.
Botoshansky and D. Kost, J. Phys. Org. Chem., 2008, 21, 1029–
1034; (c) I. Kalikhman, B. Gostevskii, E. Kertsnus, M. Botoshansky,
C. A. Tessier, W. J. Youngs, S. Deuerlein, D. Stalke and D. Kost,
Organometallics, 2007, 26, 2652–2658; (d) E. Kertsnus-Banchik, I.
Kalikhman, B. Gostevskii, Z. Deutsch, M. Botoshansky and D. Kost,
Organometallics, 2008, 27, 5285–5294.
12 N. Kocher, J. Henn, B. Gostevskii, I. Kost, I. Kalikhman, B. Engels
and D. Stalke, J. Am. Chem. Soc., 2004, 126, 5563–5568.
13 (a) R. Azhakar, R. S. Ghadwal, H. W. Roesky, J. Hey and D. Stalke,
Organometallics, 2011, 30, 3853–3858; (b) A. Jana, D. Leusser, I.
Objartel, H. W. Roesky and D. Stalke, Dalton Trans., 2011, 40, 5458–
5463; (c) R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey and D. Stalke,
Organometallics, 2011, 50, 2897–2900.
Acknowledgements
We are thankful to the Deutsche Forschungsgemeinschaft for
supporting this work. R. A. is thankful to the Alexander von
Humboldt Stiftung for a research fellowship. D. S. and J. H. are
grateful to the DNRF funded Center for Materials Crystallography
(CMC) for support and the Land Niedersachsen for providing a
fellowship in the Catalysis of Sustainable Synthesis (CaSuS) PhD
program.
References
14 (a) V. Chandrasekhar and R. Azhakar, CrystEngComm, 2005, 7,
346–349; (b) V. Chandrasekhar, R. Azhakar, B. Murugesapandian, T.
Senapati, P. Bag, M. D. Pandey, S. K. Maurya and D. Goswami, Inorg.
Chem., 2010, 49, 4008–4016; (c) V. Chandrasekhar, R. Azhakar, G. T. S.
Andavan, V. Krishnan, S. Zacchini, J. Bickley, A. Steiner, R. J. Butcher
and P. Ko¨gerler, Inorg. Chem., 2003, 42, 5989–5998.
15 M. Driess, S. Yao, M. Brym, C. van Wu¨llen and D. Lentz, J. Am. Chem.
Soc., 2006, 128, 9628–9629.
16 (a) D. Stalke, Chem. Soc. Rev., 1998, 27, 171–178; (b) T. Kottke and D.
Stalke, J. Appl. Crystallogr., 1993, 26, 615–619.
17 T. Schulz, K. Meindl, D. Leusser, D. Stern, J. Graf, C. Michaelsen,
M. Ruf, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2009, 42,
885–891.
18 SAINT, Bruker AXS Inc, Madison, Wisconsin (USA) 2000.
19 G. M. Sheldrick, SADABS, Universita¨t Go¨ttingen, Germany, 2000.
20 G. M. Sheldrick, Crystallogr. Sect. A, 2008, 64, 112–122.
21 H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr., 1983, 39,
876–881.
1 (a) J. Zhao, A. S. Goldman and J. F. Hartwig, Science, 2005, 307, 1080–
1082; (b) E. Morgan, D. F. MacLean, R. McDonald and L. Turculet, J.
Am. Chem. Soc., 2009, 131, 14234–14236; (c) D. M. Roundhill, Chem.
Rev., 1992, 92, 1–27; (d) C. M. Fafard, D. Adhikari, B. M. Foxman, D.
J. Mindiola and O. V. Ozerov, J. Am. Chem. Soc., 2007, 129, 10318–
10319; (e) G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller and
G. Bertrand, Science, 2007, 316, 439–441; (f) E. Khaskin, M. A. Iron,
L. J. W. Shimon, J. Zhang and D. Milstein, J. Am. Chem. Soc., 2010,
132, 8542–8543; (g) A. Meltzer, S. Inoue, C. Pra¨sang and M. Driess, J.
Am. Chem. Soc., 2010, 132, 3038–3046.
2 (a) D. J. Knobloch, E. Lobkovsky and P. J. Chirik, J. Am. Chem. Soc.,
2010, 132, 10553–10564; (b) E. M. Simmons and J. F. Hartwig, J.
Am. Chem. Soc., 2010, 132, 17092–17095; (c) C. C. H. Atienza, A. C.
Bowman, E. Lobkovsky and P. J. Chirik, J. Am. Chem. Soc., 2010, 132,
16343–16345; (d) A. J. Vetter, R. D. Rieth, W. W. Brennessel and W. D.
Jones, J. Am. Chem. Soc., 2009, 131, 10742–10752; (e) F. Blasberg, J. W.
Bats, M. Bolte, H.-W. Lerner and M. Wagner, Inorg. Chem., 2010, 49,
7435–7445; (f) C. Michel, P. Belanzoni, P. Gamez, J. Reedijk and E. J.
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 1529–1533 | 1533
©