G. Mehta et al. / Tetrahedron Letters 53 (2012) 829–832
831
paecilomycine framework augurs well for exploring the therapeu-
tic potential of their novel scaffold.
H
H
O
O
OH
b
a
CO2Et
CO2Et
(+)-13
Acknowledgments
CO2Et
TBSO
c
TBSO
TBSO
(+)-15
(+)-14
This research was carried out under the Indo-French joint labo-
ratory for sustainable chemistry. R.S. thanks the CSIR for the award
of a Research fellowship. G.M. wishes to thank Eli Lilly and the
Jubilant Bhartia Foundations for the research support and the Gov-
ernment of India for the award of National Research Professorship.
We acknowledge the help of Dr. Balasubramanian Sridhar in solv-
ing the X-ray crystal structures at the CCD facility of the Indian
Institute of Chemical Technology, Hyderabad.
H
H
O
O
d
O
O
CHO
OMe
OMe
P
TBSO
TBSO
(+) 17
16
N2
References and notes
e
1. (a) Grove, J. F. Nat. Prod. Rep. 1988, 5, 187–209; (b) Grove, J. F. Nat. Prod. Rep.
1993, 10, 429–448; (c) Jarvis, B. B.; Stahly, G. P.; Pavanasasivam, G.; Midiwo, J.
O.; DeSilva, T.; Holmlund, C. E.; Mazolla, E. P.; Geoghegan, R. F., Jr. J. Org. Chem.
1982, 47, 1117–1124; (d) Jarvis, B. B.; Vrudhula, V. M.; Midiwo, J. O.; Mazzola,
E. P. J. Org. Chem. 1983, 48, 2576–2578; (e) Corley, D. G.; Rottinghaus, G. E.;
Tempesta, M. S. Tetrahedron Lett. 1986, 27, 427–430; (f) Mohr, P.; Tamm, C.;
Zucher, W.; Zehnder, M. Helv. Chim. Acta 1984, 67, 406–412.
H
O
H
O
OH
OH
ref 8
H
O
TBSO
O
2. Gutzwiller, J.; Mauli, R.; Sigg, H. P.; Tamm, C. Helv. Chim. Acta 1964, 47, 2234–
2262.
(-) 18
6
3. Corley, D. G.; Rottinghaus, G. E.; Tempesta, M. S. J. Org. Chem. 1987, 52, 4405–
4408.
4. Fort, D. M.; Barnes, C. L.; Tempesta, M. S. J. Nat. Prod. 1993, 56, 1890–1897.
5. Kikuchi, H.; Miyagawa, Y.; Sahashi, Y.; Inatomi, S.; Haganuma, A.; Nakahata, N.;
Oshima, Y. J. Org. Chem. 2004, 69, 352–356.
Scheme 3. Reagents and conditions: (a) NaBH4, CeCl3ꢁ7H2O, MeOH, 15 min, 86%;
(b) allylbromide, NaH, HMPA, TBAI, ꢀ15 °C, 3 h, 89%; (c) (i) DIBAL-H, CH2Cl2, 0 °C,
1 h, quant; (ii) IBX, THF/DMSO (5:1), 87% (crude); (d) K2CO3, MeOH, 6 h, 81%;
(e) Co2(CO)8, 4 Å ms, toluene, reflux, 24 h, 34%.
6. Kikuchi, H.; Miyagawa, Y.; Sahashi, Y.; Inatomi, S.; Haganuma, A.; Nakahata, N.;
Oshima, Y. Tetrahedron Lett. 2004, 45, 6225–6228.
7. (a) Kita, T.; Takaya, Y.; Oshima, Y.; Ohta, T.; Aizawa, K.; Hirano, T.; Inakuma, T.
Tetrahedron 1998, 54, 11877–11886; (b) Obara, Y.; Kobayashi, H.; Ohta, T.;
Ohizumi, Y.; Nakahata, N. Mol. Pharmacol. 2001, 59, 1287–1297.
H
H
O
OH
O
b
a
8. Min, S.-J.; Danishefsky, S.-J. Angew. Chem., Int. Ed. 2007, 46, 2199–2202.
9. For related work from our group, see: (a) Mehta, G.; Singh, R. Tetrahedron Lett.
2005, 46, 2079–2082; (b) Mehta, G.; Singh, R. Angew. Chem., Int. Ed. 2006, 45,
953–955; (c) Mehta, G.; Shinde, H. M. Tetrahedron Lett. 2007, 48, 8297–8300; (d)
Mehta, G.; Maity, P. Tetrahedron Lett. 2007, 48, 8865–8868; (e) Mehta, G.; Bhat,
B. A. Tetrahedron Lett. 2009, 50, 2474–2477; (f) Mehta, G.; Maity, P. Tetrahedron
Lett. 2011, 52, 1749–1752; (g) Mehta, G.; Maity, P. Tetrahedron Lett. 2011, 52,
1753–1756; (h) Mehta, G.; Maity, P. Tetrahedron Lett. 2011, 52, 5161–5165.
10. Mehta, G.; Samineni, R.; Srihari, P. Tetrahedron Lett. 2011, 52, 1663–1666.
11. For some reviews on Pauson–Khand reactions see: (a) Brummnod, K. M.; Kent,
J. L. Tetrahedron 2000, 56, 3263–3283; (b) Gibson, S. E.; Stevenazzi, A. Angew.
Chem., Int. Ed. 2003, 42, 1800–1810.
CO2Et
(-)-13
CO2Et
CO2Et
TBSO
TBSO
TBSO
(-)-15
(-)-14
c
H
H
O
O
d
O
O
P
OMe
OMe
CHO
12. Preparation of (9): (a) Adams, R.; Smith, C. M.; Loewe, S. J. Am. Chem. Soc. 1942,
2087–2089; (b) Djerassi, C.; Krakower, G. W. J. Am. Chem. Soc. 1958, 237–242.
13. All new compounds were characterized on the basis of their spectroscopic data
(IR, 1H, 13C, mass, HRMS). Spectral data for some of the key compounds are as
TBSO
TBSO
(-)-17
ent-16
N2
e
follows: 10a: ½a D20
ꢂ
+64.80 (c 1.65, CHCl3); IR (neat): 2953, 2861, 1714, 1648,
1519, 1461, 1252, 1098, 839, 778. 1H NMR (500 MHz, CDCl3) d: 4.13 (q,
J = 7.0 Hz, 2H), 4.02 (d, J = 10.0 Hz, 1H), 3.64 (d, J = 10.0 Hz, 1H), 2.59–2.57 (m,
1H), 2.31 (d, J = 13.0 Hz, 1H), 2.03 (t, J = 13.0 Hz, 1H), 1.80–1.71 (m, 2H), 1.51–
1.40 (m, 2H), 1.20 (t, J = 7.0 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.80 (s, 9H), ꢀ0.02
(s, 3H), ꢀ0.03 (s, 3H). 13C NMR (75 MHz, CDCl3) d: 206.4, 169.8, 66.0, 61.6, 61.1,
49.3, 35.0, 32.5, 30.8, 25.6 (3C), 22.2, 18.0, 14.0, ꢀ5.8 (2C). MS (ESI) m/z 351
(M+Na)+; HRMS (ESI) m/z calcd for C17H32O4SiNa (M+Na)+ = 351.1967, found
H
H
O
O
ref 8
H
O
OH
OH
TBSO
351.1954. Compound 10b: ½a D20
ꢀ11.0 (c 0.60, CHCl3); IR (neat): 2932, 1712,
ꢂ
1518, 1462, 1249, 1102, 839, 778. 1H NMR (500 MHz, CDCl3) d: 4.19–4.13 (m,
2H), 4.00 (d, J = 10.0 Hz, 1H), 3.82 (d, J = 10.0 Hz, 1H), 2.52 (dd, J = 13.5, 5.0 Hz,
1H), 2.39–2.35 (m, 1H), 2.21 (br s, 1H), 2.10 (dd, J = 14.0, 5.5 Hz, 1H), 1.98–1.91
(m, 2H), 1.54–1.49 (m, 1H), 1.23 (t, J = 8.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.84
(s, 9H), 0.03 (s, 3H), 0.02 (s, 3H). 13C NMR (75 MHz, CDCl3) d: 207.1, 170.5, 65.1,
62.6, 61.1, 47.8, 32.2, 28.7, 28.3, 25.6 (3C), 19.8, 18.1, 14.0, ꢀ5.7, ꢀ5.8. MS (ESI)
m/z 351 (M+Na)+; HRMS (ESI) m/z calcd for C17H32O4SiNa (M+Na)+ = 351.1967,
O
(+)-18
ent-
6
Scheme 4. Reagents and conditions: (a) NaBH4, CeCl3ꢁ7H2O, MeOH, 15 min, 82%;
(b) allylbromide, NaH, HMPA, TBAI, ꢀ15 °C, 3 h, 85%; (c) (i) DIBAL-H, CH2Cl2, 0 °C,
1 h, quant; (ii) IBX, THF/DMSO (5:1), 84% (crude); (d) K2CO3, MeOH, 6 h, 79%; (e)
Co2(CO)8, 4 Å ms, toluene, reflux, 24 h, 32%.
found 351.1953. Compound (+)-13: ½a D20
ꢂ
+27.7 (c 1.0, CHCl3); IR (neat): 2950,
2890, 2863, 2361, 1737, 1682, 1519, 1250, 1110, 842. 1H NMR (300 MHz,
CDCl3) d: 5.83 (s, 1H), 4.12 (q, J = 7.0 Hz, 2H), 4.03 (d, J = 9.6 Hz, 1H), 3.84 (d,
J = 9.6 Hz, 1H), 2.62–2.44 (m, 2H), 2.29–2.19 (m, 1H), 2.15–2.04 (m, 1H), 1.94
(s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 0.84 (s, 9H), 0.02 (s, 6H). 13C NMR (75 MHz,
CDCl3) d: 193.6, 169.7, 161.8, 126.1, 65.3, 61.0, 57.9, 28.6, 27.9, 25.9 (3C), 24.3,
18.3, 14.2, ꢀ5.5 (2C). MS (ESI) m/z 349 (M+Na)+; HRMS (ESI) m/z calcd for
tricyclic (+)-18, spectroscopically identical with the enantiomer
(ꢀ)-18 described above and the racemic 18 reported by Danishef-
sky.8 Thus, arrival at (+)-18 can be construed as a formal synthesis
of ent-paecilomycine A 6.
In conclusion, we have outlined a concise, enantiodivergent
strategy that leads to the formal synthesis of (+)-paecilomycine
A and its antipode from a single, commercial chiral pool precur-
sor. Considering the important connect between chirality and bio-
activity profile, access to both the enantiomeric series related to
C
17H30O4SiNa (M+Na)+ = 349.1806, found 349.1813. Compound (ꢀ)-13: ½a 2D0
ꢂ
ꢀ31.7 (c 1.0, CHCl3); (+)-14: ½a D20
ꢂ
+51.36 (c 0.88, CHCl3); IR (neat): 2930, 2857,
1726, 1516, 1464, 1249, 1096, 840, 777. 1H NMR (300 MHz, CDCl3) d: 5.48 (br
d, J = 2.1 Hz, 1H), 4.48 (br d, J = 2.1 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.88 (d,
J = 10.0 Hz, 1H), 3.72 (d, J = 10.0 Hz, 1H), 1.92 (t, J = 6.0 Hz, 2H), 1.85–1.69 (m,
2H), 1.67 (s, 3H), 1,24 (t, J = 7.2 Hz, 3H), 0.85 (s, 9H), 0.01 (s, 6H). 13C NMR
(75 MHz, CDCl3) d: 174.8, 137.4, 122.7, 67.0, 65.3, 60.5, 51.2, 27.3, 25.6 (3C),