Scheme 1
As indicated in Table 1, we selected the reaction of
2-bromo-N-phenylbenzamide 7a with formamide 8a as a
model to explore the optimized conditions. It was found
that, under the catalysis of CuI and 4-hydroxy-L-proline,
7a was consumed completely after 24 h at 80 °C, delivering
11a in 84% yield (entry 1). Using K3PO4 as a base gave a
similar result (entry 2). However, the best yield was
observed with Cs2CO3 as the base (entry 3). Replacement
of 4-hydroxy-L-proline with L-proline, glycine, N,N-
dimethylglycine, or 1,10-phenanthroline gave slightly low
yields (entries 4ꢀ7). Changing solvent from DMF to
DMSO, dioxane, or toluene also decreased the reaction
yields (entries 8ꢀ10). Based on these results, we concluded
that, withCuI/4-hydroxy-L-prolineasthe catalyst, Cs2CO3
asthebase, andDMF asthe solvent, thiswastheoptimized
set of conditions for this transformation.
Figure 1. Structures of natural and synthesized biologically
important quinazolinones.
on using anthranilic acid14 or its derivatives15 as the
starting materials and generally suffer from low yields,
multistep reactions, or harsh reaction conditions. These
problems have stimulated several groups to apply metal-
catalyzed reactionstodevelop new methods for assembling
substituted quinazolinones.16ꢀ18 Recently, the Ding and
Fu groups independently discovered that copper-catalyzed
N-arylation ofo-bromobenzoicacidderivativeswith amid-
ines and subsequent intramolecular condensation could
afford 2-substituted and 2,3-disubstituted quinazolinones.17
During our studies on heterocycle synthesis via copper-
catalyzed reactions,19,20 we found that more conveniently
available amides could serve as suitable nucleophiles for
coupling reactions with N-substituted o-bromobenza-
mides, affording 3-substituted and 2,3-disubstituted quin-
azolinones after condensative cyclization as depicted in
Scheme 1. Herein, we wish to disclose our results.
Table 1. Coupling of 2-Bromo-N-phenylbenzamide with For-
mamide under Different Conditionsa
entry
ligandb
base
solvent
yield (%)c
(14) (a) Segarra, V.; Isabel Crespo, M.; Pujol, F.; Beleta, J.; Domenech,
T.; Miralpeix, M.; Palacios, J. M.; Castro, A.; Martinez, A. Bioorg. Med.
Chem. Lett. 1998, 8, 505. (b) Connolly, D. J.; Guiry, P. J. Synlett 2001, 1707.
(c) Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.;
Murano, K.; Ohkubo, M.; Kinoshita, T.; Iwashita, A.; Mihara, K.
J. Med. Chem. 2004, 47, 4151. (d) Liu, J. F.; Ye, P.; Zhang, B.; Bi, G.;
Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C. M. J. Org. Chem. 2005,
70, 6339. (e) Liu, J. F.; Kaselj, M.; Isome, Y.; Ye, P.; Sargent, K.;
Sprague, K.; Cherrak, D.; Wilson, C. J.; Si, Y.; Yohannes, D. J. Comb.
Chem. 2006, 8, 7. (f) Adib, M.; Ansari, S.; Mohammadi, A.; Bijanzadeh,
H. R. Tetrahedron Lett. 2010, 51, 30. (h) Kshirsagar, U. A.; Argade,
N. P. Org. Lett. 2010, 12, 3716.
(15) (a) Kotsuki, H.; Sakai, H.; Morimoto, H.; Suenaga, H. Synlett
1999, 1993. (b) Witt, A.; Bergman, J. Tetrahedron 2000, 56, 7245. (c)
Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. 2005, 70, 6941.
(d) Roy, A. D.; Subramanian, A.; Roy, R. J. Org. Chem. 2006, 71, 382.
(e) Zhou, J.; Fang, J. J. Org. Chem. 2011, 76, 7730.
1
2
A
A
A
B
C
D
E
A
A
A
K2CO3
K3PO4
DMF
84
83
95
72
75
68
40
51
67
40
DMF
DMF
3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
4
DMF
5
DMF
6
DMF
7
DMF
8
DMSO
dioxane
toluene
9
10
a Reaction conditions: 7a (0.25 mmol), 8a (0.5 mmol), CuI
(0.025 mmol), ligand (0.025 mmol), base (0.5 mmol), solvent (1 mL),
80 °C, 24 h. b A: 4-hydroxy-L-proline. B: L-proline. C: glycine. D: N,N-
dimethylglycine. E: 1,10-phenanthroline. c Isolated yield.
(16) (a) Zheng, Z.; Alper, H. Org. Lett. 2008, 10, 829. (b) Zeng, F.;
Alper, H. Org. Lett. 2010, 12, 3642. (c) Ma, B.; Wang, Y.; Peng, J.; Zhu,
Q. J. Org. Chem. 2011, 76, 6362.
(17) (a) Zhou, J.; Fu, L.; Lv, M.; Liu, J.; Pei, D.; Ding, K. Synthesis
2008, 15, 3974. (b) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem.
2009, 121, 354.
(18) (a) Xu, W.; Fu, H. J. Org. Chem. 2011, 76, 3846. (b) Xu, W.; Jin,
Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274.
With these conditions identified, we next investigated
a series of 2-bromobenzamides to examine the scope and
the limitations of this process. As shown in Table 2, our
Org. Lett., Vol. 14, No. 4, 2012
1151