492
T.J. Boyle et al.
changed from a clear to pale yellow. After stirring for 12 h, the reaction mixture was set
aside to allow the volatile portion of the reaction mixture to slowly evaporate until
X-ray quality crystals formed.
2.3.1. [(py)(CH3)2Al]2(k-4DBP) (8). Used AlMe3 (0.500 g, 6.94 mmol) and H2-4DBP
(1.47 g, 3.47 mmol). Yield: 0.600 g (12.4%). FTIR (KBr, cmꢁ1): 3058 (w), 3022 (w), 2998
(w), 2954 (s), 2920 (s,sh), 2868 (s), 2705 (w), 1615 (m), 1491 (w), 1482 (w), 1462 (m),
1450 (s), 1423 (s), 1286 (s), 1273 (s,sh), 1218 (m), 1195 (m), 1157 (w), 1124 (w), 1070 (m),
1051 (m), 1019 (w), 900 (m,sh), 885 (s), 779 (w), 759 (w), 703 (s), 671 (s), 648 (m), 434
(w). 1H NMR (400.1 MHz, py-d5) ꢁ 8.73 (C5H5), 7.57 (C5H5), 7.45 (2.0H,
[OC6H2(C(CH3)3)2]2CH2), 7.20 (C5H5), 4.10 (1.1H, s, [OC6H2(C(CH3)3)2]2CH2), 1.45
(19.5H, s, [OC6H2(C(CH3)3)2]2CH2), ꢁ0.18 (6.0H, s, CH3). Anal. Calcd for
C43H64Al2N2O2 (%): C, 74.32; H, 9.28; N, 4.03. Found: C, 72.23; H, 9.03; N, 3.65.
2.3.2. [(py)(Et)2Al]2(k-4DBP) (9). Used AlEt3 (0.500 g, 4.38 mmol) and H2-4DBP
(0.931 g, 2.19 mmol). Yield: 0.712 g (21.3%). FTIR (KBr, cmꢁ1): 3067 (w), 3020 (w),
2955 (s), 2895 (s,sh), 2860 (s), 2797 (w), 2723 (w), 1615 (m), 1491 (m), 1483 (m,sh), 1450
(s), 1422 (s), 1387 (m), 1357 (m), 1283 (s), 1267 (s), 1215 (s), 1197 (m), 1158 (w), 1123
1
(w), 1070 (s), 1052 (m), 1020 (m), 977 (m,sh), 873 (s), 699 (m), 632 (m). H NMR
(400.1 MHz, py-d5) ꢁ 8.75 (C5H5), 7.60 (C5H5), 7.42 (2.0H, OC6H2(C(CH3)3)2]2CH2),
7.23 (C5H5), 4.09 (1.0H, s, [OC6H2(C(CH3)3)2]2CH2), 1.43 (17.8H, s, [OC6H2(C
(CH3)3)2]2CH2), 1.16 (5.0H, t, CH2CH3, JH–H ¼ 8.2 Hz), 0.52 (3.7 H, q, CH2CH3,
JH–H ¼ 8.1 Hz). Anal. Calcd for C47H72Al2N2O2 (%): C, 75.16; H, 9.66; N, 3.73. Found:
C, 72.42; H, 9.49; N, 3.92.
2.3.3. [(py)((CH3)2CHCH2)2Al]2(k-4DBP) (10). Used Al(Bui)3 (0.500 g, 2.52 mmol)
and H2-4DBP (0.535 g, 1.26 mmol). Yield: 0.672 g (30.8%). FTIR (KBr, cmꢁ1): 3071
(w), 3058 (w), 3019 (m), 2948 (s), 2918 (s,sh), 2886 (s,sh), 2862 (s), 2787 (w), 1613 (s),
1461(s), 1448 (s), 1421 (s), 1388 (s), 1359 (s), 1265 (s), 1215 (s), 1186 (m), 1159 (m), 1123
(m), 1068 (s), 1050 (s), 1017 (s), 941 (w), 899 (m), 871 (s), 818 (w), 781 (w), 762 (m), 702
1
(s), 667 (s), 647 (s), 439 (w). H NMR (400.1 MHz, py-d5) ꢁ 8.75 (C5H5), 7.63 (C5H5),
7.36 (2.0H, [OC6H2(C(CH3)3)2]2CH2), 7.30 (C5H5), 4.04 (0.9H, s, [OC6H2(C
(CH3)3)2]2CH2), 1.88 (1.8H, sept, CH2CH(CH3)2, JH–H ¼ 6.5 Hz), 1.42 (18.4H, s,
[OC6H2(C(CH3)3)2]2CH2), 1.03 (12.0H, d, CH2CH(CH3)2, JH–H ¼ 3.2 Hz), 0.66 (4H, d,
CH2CH(CH3)2, JH–H ¼ 2.9 Hz). Anal. Calcd for C55H88Al2N2O2 (%): C, 76.52; H,
10.27; N, 3.25. Found: C, 75.68; H, 10.20; N, 4.41.
2.4. General X-ray crystal structure information [25]
Crystals were mounted onto a glass fiber from a pool of FluorolubeTM and immediately
placed in a cold N2 vapor stream on a Bruker AXS diffractometer equipped with a
SMART 1000 CCD detector using graphite monochromated Mo-Kꢂ radiation
˚
(ꢃ ¼ 0.7107 A). Lattice determination and data collection were carried out using
SMART Version 5.054 software. Data reduction was performed using SAINTPLUS
Version 6.01 software and corrected for absorption using the SADABS program within
the SAINT software package.