Allylic Phosphites and Phosphane Oxides by Allylic Substitution Reactions
Na]+ 460.0920; found 460.0934. Enantiomeric excess was deter-
mined by HPLC (Chiralcel OD-H column, λ = 214 nm, hexane/
isopropanol = 70:30, flow rate = 0.7 mLmin–1): tR = 17.06 (minor),
20.56 (major) min; ee = 90%.
[6] a) K. Yuan, L. Zhang, H.-L. Song, Y. Hu, X.-Y. Wu, Tetrahe-
dron Lett. 2008, 49, 6262–6264; b) J.-J. Gong, K. Yuan, X.-Y.
Wu, Tetrahedron: Asymmetry 2009, 20, 2117–2120; c) K. Yuan,
H.-L. Song, Y. Hu, J.-F. Fang, X.-Y. Wu, Tetrahedron: Asym-
metry 2010, 21, 903–908; d) J.-J. Gong, T.-Z. Li, K. Pan, X.-Y.
Wu, Chem. Commun. 2011, 1491–1493.
Supporting Information (see footnote on the first page of this arti-
cle): Spectroscopic data of all new compounds, detailed descrip-
tions of the experimental procedures, spectroscopic data, chiral
HPLC traces, and X-ray data for compounds II and 4b.
[7] F.-R. Zhong, X.-Y. Han, Y.-Q. Wang, Y.-X. Lu, Angew. Chem.
Int. Ed. 2011, DOI: 10.1002/anie.20110209.
[8] a) Y.-L. Shi, M. Shi, Adv. Synth. Catal. 2007, 349, 2129–2135;
b) H.-P. Deng, Y. Wei, M. Shi, Eur. J. Org. Chem. 2011, 1956–
1962; c) Y.-L. Yang, C.-K. Pei, M. Shi, Org. Biomol. Chem.
2011, 9, 3349–3358.
[9] CCDC-774575 (for II) and -829206 (for 4b) contain the supple-
mentary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[10] a) M. Betti, Gazz. Chim. Ital. 1900, 30, 301–309; b) M. Betti,
Gazz. Chim. Ital. 1900, 30, 310–316; c) M. Betti, Gazz. Chim.
Ital. 1906, 36, 392–394; d) M. Betti, Org. Synth. Coll. 1941,
1, 381–383; e) C. Cardellicchio, M. A. M. Capozzi, F. Naso,
Tetrahedron: Asymmetry 2010, 21, 507–517.
Acknowledgments
We thank the Shanghai Municipal Committee of Science and Tech-
nology (08dj1400100–2), the National Basic Research Program of
China [(973)-2010CB833302], and the National Natural Science
Foundation of China (21072206, 20472096, 20872162, 20672127,
20821002, and 20732008) for financial support. Mr. Sun Jie is also
thanked for performing X-ray diffraction studies.
[11] For reviews on chiral phosphorus compounds as ligands in
metal-catalyzed reactions, see: a) W. Tang, X. Zhang, Chem.
Rev. 2003, 103, 3029–3069; b) K. V. L. Crépy, T. Imamoto, Top.
Curr. Chem. 2003, 229, 1–40; c) H.-U. Blaser, E. Schmidt
(Eds.), Asymmetric Catalysis on Industrial Scale: Challenges,
Approaches, and Solutions, Wiley-VCH, Weinheim, 2004.
[12] For reviews on the biological activity of aminophosphonic ac-
ids and their derivatives, see: a) P. Kafarski, B. Lejczak, Phos-
phorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215; b) V. D.
Romanenko, V. P. Kukhar, Chem. Rev. 2006, 106, 3868–3965.
[13] For reviews on the asymmetric construction of C–P bonds, see:
a) H. Gröger, B. Hammer, Chem. Eur. J. 2000, 6, 943–948; b)
J.-A. Ma, Chem. Soc. Rev. 2006, 35, 630–636; c) P. Merino, E.
Marqués-López, R. P. Herrera, Adv. Synth. Catal. 2008, 350,
1195–1208; d) M. Ordóñez, H. Rojas-Cabrera, C. Cativiela,
Tetrahedron 2009, 65, 17–49.
[14] a) T. Nishimura, S. Hirabayashi, Y. Yasuhara, T. Hayashi, J.
Am. Chem. Soc. 2006, 128, 2556–2557; b) T. Kawamoto, S.
Hirabayashi, X.-X. Guo, T. Nishimura, T. Hayashi, Chem.
Commun. 2009, 3528–3530; c) L. Hong, W.-S. Sun, C.-X. Liu,
D.-P. Zhao, R. Wang, Chem. Commun. 2010, 46, 2856–2858; d)
W.-S. Sun, L. Hong, C.-X. Liu, R. Wang, Org. Lett. 2010, 12,
3914–3917.
[1] For reviews on chiral phosphorus compounds as catalysts in
organocatalytic reactions, see: a) X. Lu, C. Zhang, Z. Xu, Acc.
Chem. Res. 2001, 34, 535–544; b) J. L. Methot, W. R. Roush,
Adv. Synth. Catal. 2004, 346, 1035–1050; c) Y. Wei, M. Shi,
Acc. Chem. Res. 2010, 43, 1005–1018; d) A. Marinetti, A. Voit-
uriez, Synlett 2010, 174–194.
[2] a) M. Shi, L.-H. Chen, Chem. Commun. 2003, 1310–1311; b)
M. Shi, L.-H. Chen, C.-Q. Li, J. Am. Chem. Soc. 2005, 127,
3790–3800; c) M. Shi, L.-H. Chen, W.-D. Teng, Adv. Synth.
Catal. 2005, 347, 1781–1789; d) M. Shi, C.-Q. Li, Tetrahedron:
Asymmetry 2005, 16, 1385–1391; e) Y.-H. Liu, L.-H. Chen, M.
Shi, Adv. Synth. Catal. 2006, 348, 973–979; f) M. Shi, G.-N.
Ma, J. Gao, J. Org. Chem. 2007, 72, 9779–9781; g) Z.-Y. Lei,
G.-N. Ma, M. Shi, Eur. J. Org. Chem. 2008, 3817–3820; h) Y.-
H. Liu, M. Shi, Adv. Synth. Catal. 2008, 350, 122–128; i) M.
Shi, Y.-H. Liu, L.-H. Chen, Chirality 2007, 19, 124–128; j) Z.-
Y. Lei, X.-G. Liu, M. Shi, M. Zhao, Tetrahedron: Asymmetry
2008, 19, 2058–2062; k) K. Matsui, S. Takizawa, H. Sasai, Syn-
lett 2006, 761–764; l) S. Takizawa, N. Inoue, S. Hirata, H. Sa-
sai, Angew. Chem. 2010, 122, 9919–9923; Angew. Chem. Int.
Ed. 2010, 49, 9725–9729; m) S. Takizawa, K. Kiriyama, K. Ieki,
H. Sasai, Chem. Commun. 2011, DOI: 10.1039/c1cc12784e; n)
J.-M. Garnier, F. Liu, Org. Biomol. Chem. 2009, 7, 1272–1275;
o) J.-M. Garnier, C. Anstiss, F. Liu, Adv. Synth. Catal. 2009,
351, 331–338; p) C. Anstiss, J.-M. Garnier, F. Liu, Org. Biomol.
Chem. 2010, 8, 4400–4407.
[3] a) M.-J. Qi, T. Ai, M. Shi, G. Li, Tetrahedron 2008, 64, 1181–
1186; b) X.-Y. Guan, Y.-Q. Jiang, M. Shi, Eur. J. Org. Chem.
2008, 2150–2155; c) Y.-Q. Jiang, Y.-L. Shi, M. Shi, J. Am.
Chem. Soc. 2008, 130, 7202–7203; d) G.-N. Ma, S.-H. Cao,
M. Shi, Tetrahedron: Asymmetry 2009, 20, 1086–1092; e) F.-R.
Zhong, Y.-Q. Wang, X.-Y. Han, K.-W. Huang, Y.-X. Lu, Org.
Lett. 2011, 13, 1310–1313.
[4] a) B. J. Cowen, S. J. Miller, J. Am. Chem. Soc. 2007, 129,
10988–10989; b) H. Xiao, Z. Chai, C.-W. Zheng, Y.-Q. Yang,
W. Liu, J.-K. Zhang, G. Zhao, Angew. Chem. 2010, 122, 4569–
4572; Angew. Chem. Int. Ed. 2010, 49, 4467–4470; c) X.-Y. Han,
Y.-Q. Wang, F.-R. Zhong, Y.-X. Lu, J. Am. Chem. Soc. 2011,
133, 1726–1729; d) X.-Y. Han, S.-X. Wang, F.-R. Zhong, Y.-X.
Lu, Synlett 2011, 1859–1864.
[15] For selected papers on the asymmetric substitution of MBH
acetates and carbonates by nucleophiles, see: a) K. Jiang, J.
Peng, H.-L. Cui, Y.-C. Chen, Chem. Commun. 2009, 45, 3955–
3957; b) H.-L. Cui, J.-R. Huang, J. Lei, Z.-F. Wang, S. Chen,
L. Wu, Y.-C. Chen, Org. Lett. 2010, 12, 720–723; c) H.-L. Cui,
X. Feng, J. Peng, J. Lei, K. Jiang, Y.-C. Chen, Angew. Chem.
2009, 121, 5847–5850; Angew. Chem. Int. Ed. 2009, 48, 5737–
5740; d) X. Feng, Y.-Q. Yuan, H.-L. Cui, K. Jiang, Y.-C. Chen,
Org. Biomol. Chem. 2009, 7, 3660–3662.
[16] E. Balaraman, V. Srinivas, K. C. Kumara Swamy, Tetrahedron
2009, 65, 7603–7610.
[17] For selected reports on SN2Ј–SN2Ј substitution reactions of
Morita–Baylis–Hillman acetates or carbonates, see: a) B. M.
Trost, M. R. Machacek, H. C. Tsui, J. Am. Chem. Soc. 2005,
127, 7014–7024; b) C.-W. Cho, J.-R. Kong, M. J. Krische, Org.
Lett. 2004, 6, 1337–1339; c) C.-W. Cho, M. J. Krische, Angew.
Chem. 2004, 116, 6857–6859; Angew. Chem. Int. Ed. 2004, 43,
6689–6691; d) H. Park, C.-W. Cho, M. J. Krische, J. Org. Chem.
2006, 71, 7892–7894; e) S. Kobbelgaard, S. Brandes, K. A.
Jørgensen, Chem. Eur. J. 2008, 14, 1464–1471.
[5] Y.-Q. Fang, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130,
5660–5661.
Received: September 19, 2011
Published Online: November 8, 2011
Eur. J. Org. Chem. 2012, 183–187
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
187