Journal of Medicinal Chemistry
Article
Design and in Vitro/in Vivo Evaluation of a Benzamide-Type
Cyclooxygenase-1 Selective Inhibitor. J. Med. Chem. 2008, 51,
2400−2411.
(26) Perrone, M. G.; Scilimati, A.; Simone, L.; Vitale, P. Selective
COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med.
Chem. 2010, 17, 3769−3805.
(27) Aid, S.; Bosetti, F. Targeting cyclooxygenases-1 and -2 in
neuroinflammation: Therapeutic implications. Biochimie 2011, 93, 46−
51.
(28) Simmons, D. L.; Botting, R. M.; Hla, T. Cyclooxygenase
isozymes: The biology of prostaglandin synthesis and inhibition.
Pharmacol. Rev. 2004, 56, 387−437.
(29) Teismann, P.; Tieu, K.; Choi, D.-K.; Wu, D.-C.; Naini, A.;
Hunot, S.; Vila, M.; Jackson-Lewis, V.; Przedborski, S. Cyclo-
oxygenase-2 is instrumental in Parkinson's disease neurodegeneration.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 5473−5478.
(30) Choi, S.-H.; Bosetti, F. Cyclooxygenase-1 null mice show
reduced neuroinflammation in response to β-amyloid. Aging 2009, 1,
234−244.
(31) McKee, A. C.; Carreras, I.; Hossain, L.; Ryu, H.; Klein, W. L.;
Oddo, S.; LaFerla, F. M.; Jenkins, B. G.; Kowall, N. W.; Dedeoglu, A.
Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits
in Alzheimer mice. Brain Res. 2008, 1207, 225−236.
(32) Nomura, D. K.; Morrison, B. E.; Blankman, J. L.; Long, J. Z.;
Kinsey, S. G.; Marcondes, M. C. G.; Ward, A. M.; Hahn, Y. K.;
Lichtman, A. H.; Conti, B.; Cravatt, B. F. Endocannabinoid Hydrolysis
Generates Brain Prostaglandins That Promote Neuroinflammation.
Science (Washington, DC, U.S.) 2011, 334, 809−813.
(33) Smith, C. J.; Zhang, Y.; Koboldt, C. M.; Muhammad, J.; Zweifel,
B. S.; Shaffer, A.; Talley, J. J.; Masferrer, J. L.; Seibert, K.; Isakson, P. C.
Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc.
Natl. Acad. Sci. U.S.A. 1998, 95, 13313−13318.
(34) Brenneis, C.; Maier, T. J.; Schmidt, R.; Hofacker, A.; Zulauf, L.;
Jakobsson, P.-J.; Scholich, K.; Geisslinger, G. Inhibition of
prostaglandin E2 synthesis by SC-560 is independent of cyclo-
oxygenase 1 inhibition. FASEB J. 2006, 20, 1352−1360.
(35) Daikoku, T.; Tranguch, S.; Trofimova, I. N.; Dinulescu, D. M.;
Jacks, T.; Nikitin, A. Y.; Connolly, D. C.; Dey, S. K. Cyclooxygenase-1
Is Overexpressed in Multiple Genetically Engineered Mouse Models of
Epithelial Ovarian Cancer. Cancer Res. 2006, 66, 2527−2531.
(36) Gupta Rajnish, A.; Tejada Lovella, V.; Tong Beverly, J.; Das
Sanjoy, K.; Morrow Jason, D.; Dey Sudhansu, K.; DuBois Raymond,
N. Cyclooxygenase-1 is overexpressed and promotes angiogenic
growth factor production in ovarian cancer. Cancer Res. 2003, 63,
906−911.
(37) Kakuta, H.; Fukai, R.; Zheng, X.; Ohsawa, F.; Bamba, T.; Hirata,
K.; Tai, A. Identification of urine metabolites of TFAP, a cyclo-
oxygenase-1 inhibitor. Bioorg. Med. Chem. Lett. 2010, 20, 1840−1843.
(38) Bhattacharyya, D. K.; Lecomte, M.; Dunn, J.; Morgans, D. J.;
Smith, W. L. Selective inhibition of prostaglandin endoperoxide
synthase-1 (cyclooxygenase-1) by valerylsalicylic acid. Arch. Biochem.
Biophys. 1995, 317, 19−24.
inhibits colon tumor cell growth and induces apoptosis with antitumor
activity. Cancer Prev. Res. (Philadelphia, PA, U. S.) 2009, 2, 572−580.
(44) Piazza, G. A.; Keeton, A. B.; Tinsley, H. N.; Whitt, J. D.; Gary,
B. D.; Mathew, B.; Singh, R.; Grizzle, W. E.; Reynolds, R. C. NSAIDs:
Old drugs reveal new anticancer targets. Pharmaceuticals 2010, 3,
1652−1667.
(45) Wang, X.; Kingsley, P. J.; Marnett, L. J.; Eling, T. E. The role of
NAG-1/GDF15 in the inhibition of intestinal polyps in APC/Min
mice by sulindac. Cancer Prev. Res. 2011, 4, 150−160.
(46) Steinbrink, S. D.; Pergola, C.; Buehring, U.; George, S.;
Metzner, J.; Fischer, A. S.; Haefner, A.-K.; Wisniewska, J. M.;
Geisslinger, G.; Werz, O.; Steinhilber, D.; Maier, T. J. Sulindac sulfide
suppresses 5-lipoxygenase at clinically relevant concentrations. Cell.
Mol. Life Sci. 2010, 67, 797−806.
(47) Etienne, F.; Resnick, L.; Sagher, D.; Brot, N.; Weissbach, H.
Reduction of Sulindac to its active metabolite, sulindac sulfide: Assay
and role of the methionine sulfoxide reductase system. Biochem.
Biophys. Res. Commun. 2003, 312, 1005−1010.
(48) Walters, M. J.; Blobaum, A. L.; Kingsley, P. J.; Felts, A. S.;
Sulikowski, G. A.; Marnett, L. J. The influence of double bond
geometry in the inhibition of cyclooxygenases by sulindac derivatives.
Bioorg. Med. Chem. Lett. 2009, 19, 3271−3274.
(49) Prusakiewicz, J. J.; Felts, A. S.; Mackenzie, B. S.; Marnett, L. J.
Molecular Basis of the Time-Dependent Inhibition of Cyclo-
oxygenases by Indomethacin. Biochemistry 2004, 43, 15439−15445.
(50) Alcalde, E.; Mesquida, N.; Frigola, J.; Lopez-Perez, S.; Merce, R.
Indene-based scaffolds. Design and synthesis of novel serotonin 5-
HT6 receptor ligands. Org. Biomol. Chem. 2008, 6, 3795−3810.
(51) Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T.
P.; Dannenberg, A. J.; Marnett, L. J.; Subbaramaiah, K. Sulindac
Derivatives That Activate the Peroxisome Proliferator-activated
Receptor gamma but Lack Cyclooxygenase Inhibition. J. Med. Chem.
2008, 51, 4911−4919.
(52) Musser, J. H.; Kreft, A. F., III; Failli, A. A.; Demerson, C. A.;
Shah, U. S.; Nelson, J. A. Substituted indole-, indene-, pyranoindole-
and tetrahydrocarbazolealkanoic acid derivatives as inhibitors of PLA2
and lipoxygenase. 93-29199 5420289, 19930310, 1995.
(53) Musso, D. L.; Cochran, F. R.; Kelley, J. L.; McLean, E. W.;
Selph, J. L.; Rigdon, G. C.; Orr, G. F.; Davis, R. G.; Cooper, B. R.;
Styles, V. L.; Thompson, J. B.; Hall, W. R. Indanylidenes. 1. Design
and Synthesis of (E)-2-(4,6-Difluoro-1-indanylidene)acetamide, a
Potent, Centrally Acting Muscle Relaxant with Antiinflammatory and
Analgesic Activity. J. Med. Chem. 2003, 46, 399−408.
(54) Romeiro Nelilma, C.; Leite Ramon, D. F.; Lima Lidia, M.;
Cardozo Suzana, V. S.; de Miranda Ana, L. P.; Fraga Carlos, A. M.;
Barreiro Eliezer, J. Synthesis, pharmacological evaluation and docking
studies of new sulindac analogues. Eur. J. Med. Chem. 2009, 44, 1959−
1971.
(55) Jung, M.; Wahl, A. F.; Neupert, W.; Geisslinger, G.; Senter, P. D.
Synthesis and activity of fluorinated derivatives of sulindac sulphide
and sulindac Sulphone. Pharm. Pharmacol. Commun. 2000, 6, 217−
221.
(56) Felts, A. S.; Ji, C.; Stafford, J. B.; Crews, B. C.; Kingsley, P. J.;
Rouzer, C. A.; Washington, M. K.; Subbaramaiah, K.; Siegel, B. S.;
Young, S. M.; Dannenberg, A. J.; Marnett, L. J. Desmethyl Derivatives
of Indomethacin and Sulindac as Probes for Cyclooxygenase-
Dependent Biology. ACS Chem. Biol. 2007, 2, 479−483.
(57) Broyles, D. A.; Carpenter, B. K. Factors affecting the selection of
products from a photochemically generated singlet biradical. Org.
Biomol. Chem. 2005, 3, 1757−1767.
(58) Brewster, K.; Chittenden, R. A.; Pinder, R. M.; Skeels, M.
Structure of the indene-3-acetic acids. II. Reformatskii reactions of 6-
(benzyloxy)-, 5,6-dimethoxy-, and 6-methoxy-1-indanones. J. Chem.
Soc., Perkin Trans. 1 1972, 941−943.
(39) Siqueira-Junior, J. M.; Peters, R. R.; de Brum-Fernandes, A. J.;
Ribeiro-do-Valle, R. M. Effects of valeryl salicylate, a COX-1 inhibitor,
on models of acute inflammation in mice. Pharmacol. Res. 2003, 48,
437−443.
(40) Labayle, D.; Fischer, D.; Vielh, P.; Drouhin, F.; Pariente, A.;
Bories, C.; Duhamel, O.; Trousset, M.; Attali, P. Sulindac causes
regression of rectal polyps in familial adenomatous polyposis.
Gastroenterology 1991, 101, 635−639.
(41) Narisawa, T. An overview on chemoprevention of colorectal
cancer. Nihon Geka Gakkai zasshi 1998, 99, 362−367.
(42) Kashfi, K.; Rigas, B. Non-COX-2 targets and cancer: Expanding
the molecular target repertoire of chemoprevention. Biochem.
Pharmacol. 2005, 70, 969−986.
(43) Piazza, G. A.; Keeton, A. B.; Tinsley, H. N.; Gary, B. D.; Whitt,
J. D.; Mathew, B.; Thaiparambil, J.; Coward, L.; Gorman, G.; Li, Y.;
Sani, B.; Hobrath, J. V.; Maxuitenko, Y. Y.; Reynolds, R. C. A novel
sulindac derivative that does not inhibit cyclooxygenases but potently
(59) Peerboom, R. A. L.; de Koning, L. J.; Nibbering, N. M. M. On
the stabilization of carbanions by adjacent phenyl, cyano, methox-
ycarbonyl, and nitro groups in the gas phase. J. Am. Soc. Mass Spectrom.
1994, 5, 159−168.
2299
dx.doi.org/10.1021/jm201528b | J. Med. Chem. 2012, 55, 2287−2300