ORGANIC
LETTERS
2012
Vol. 14, No. 6
1500–1503
Synthesis of Functionalized
Dioxa-aza[7]helicenes Using
Palladium Catalyzed Arylations
†
Hans Kelgtermans, Liliana Dobrzanska, Luc Van Meervelt, and Wim Dehaen*
†
‡
,†
ꢀ
Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit
Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium, and Biomolecular Architecture,
Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001
Leuven, Belgium
Received January 30, 2012
ABSTRACT
Despite the recent reports on transition-metal catalyzed cycloisomerization strategies toward helicenes, the amount of palladium catalyzed routes
remains rather scarce. Within this letter the successful preparation and characterization of novel dioxa-aza[7]helicenes using palladium mediated
coupling reactions is presented.
During the past decades, helicenes gained a consider-
able amount of attention, and not only by synthetic
chemists. Their unique helical shaped backbone, which
is formed by a successive annulation of (hetero)
aromatic rings, has led to an impressive number of
diverse applications, mostly based on the inherently
chiral conformation.1 Remarkable examples of this
applicability include chiral catalysis,2 self-assembly,3
and biomolecular recognition.4
The recently increased interest in these areas is most
likely caused by the inspiring discoveries made during the
pursuit toward new synthetic approaches that avoid
photochemical cyclizations,5 a field now dominated by
the cycloisomerization-based methods first reported by
6
ꢀ
ꢀ
Stary and Stara in 1998. However, despite this sudden
growth in transition-metal based procedures, synthetic
routes using palladium catalyzed coupling reactions as a
crucial step in the formation of a helicene are rare, probably
due to the challenging preparation of an appropriate pre-
cursor. Notable examples thus far include a Buchwaldꢀ
Hartwig arylation7 and a double CꢀH activation8
(Scheme 1). However, both approaches are suffering from
certain drawbacks. First, compounds like 1 are not readily
† Molecular Design and Synthesis.
‡ Biomolecular Architecture.
(1) For some recent reviews, see: (a) Urbano, A. Angew. Chem., Int.
Ed. 2003, 42, 3986. (b) Shen, Y.; Chen, C.-F. Chem. Rev. 2011, article
ASAP (doi:10.1021/cr200087r).
(2) (a) Crittall, M. R.; Rzepa, H.; Carbery, D. R. Org. Lett. 2011, 13,
1250. (b) Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew. Chem.,
Int. Ed. 2008, 47, 9708.
(3) (a) Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi,
M. Angew. Chem., Int. Ed. 2011, 50, 3684. (b) Shcherbina, M. A.; Zeng,
X.-B.; Tadjiev, T.; Ungar, G.; Eichhorn, S. H.; Philips, K. E. S.; Katz,
T. J. Angew. Chem., Int. Ed. 2009, 48, 7837. (c) Murguly, E.; McDonald, R.;
Branda, N. Org. Lett. 2000, 2, 3169.
(4) (a) Shinohara, K.-I.; Sannohe, Y.; Kaieda, S.; Tanaka, K.-I.;
Osuga, H.; Tahara, H.; Xu, Y.; Kawase, T.; Bando, T.; Sugiyama, H.
J. Am. Chem. Soc. 2010, 132, 3778. (b) Xu, Y.; Zhang, Y.; Sugiyama, H.;
Umano, T.; Osuga, H.; Tanaka, K. J. Am. Chem. Soc. 2004, 126, 6566.
(c) Honzawa, S.; Okubo, H.; Anzai, S.; Yamaguchi, M.; Tsumoto, K.;
Kumagai, I. Bioorg. Med. Chem. 2002, 10, 3213.
(5) (a) Waghray, D.; Nulens, W.; Dehaen, W. Org. Lett. 2011, 13,
5516. (b) Pearson, M. S. M.; Carbery, D. R. J. Org. Chem. 2009, 74,
5320. (c) Bossi, A.; Maiorana, S.; Graiff, C.; Tiripicchio, A.; Licandro,
E. Eur. J. Org. Chem. 2007, 28, 4499.
ꢁ ꢁ ꢀ
(6) (a) Songis, O.; Mısek, J.; Schmid, M. B.; Kollarovic, A.; Stara,
´
ꢁ ꢀ
ꢀ
I. G.; Saman, D.; Cısarova, I.; Stary, I. J. Org. Chem. 2010, 75, 6889.
´
ꢀ
ꢀ
ꢁ
(b) Stara, I. G.; Stary, I.; Kollavoric, A.; Teply, F.; Saman, D.; Tichy, M.
ꢀ
ꢀ
J. Org. Chem. 1998, 63, 4046.
(7) Nakano, K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki,
K. Angew. Chem., Int. Ed. 2005, 44, 7136.
(8) Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H.
J. Org. Chem. 2007, 72, 7406.
r
10.1021/ol300236t
Published on Web 02/24/2012
2012 American Chemical Society