Tetrahedron Lett., 2009, 50, 6844–6847; J. V. Carolan, S. J. Butler and
K. A. Jolliffe, J. Org. Chem., 2009, 74 (8), 2992–2996; G. Ambrosi,
M. Formica, V. Fusi, L. Giorgi, A. Guerri, E. Macedi, M. Micheloni,
P. Paoli, R. Pontellini and P. Rossi, Inorg. Chem., 2009, 48 (13), 5901–
5912; H. N. Lee, Z. Xu, S. K. Kim, K. M. K. Swamy, Y. Kim, S.-J. Kim
and J. Yoon, J. Am. Chem. Soc., 2007, 129 (13), 3828–3829;
B. P. Morgan, S. He and R. C. Smith, Inorg. Chem., 2007, 46 (22),
9262–9266; D. H. Lee, S. Y. Kim and J.-I. Hong, Angew. Chem., Int. Ed.,
2004, 43 (36), 4777–4780; L. Fabbrizzi, N. Marcotte, F. Stomeo and
A. Taglietti, Angew. Chem., Int. Ed., 2002, 41 (20), 3811–3814.
7 C. Bazzicalupi, A. Bencini and V. Lippolis, Chem. Soc. Rev., 2010, 39
(10), 3709–3728; E. Climent, R. Casasus, M. D. Marcos, R. Martinez-
Manez, F. Sancenon and J. Soto, Chem. Commun., 2008 (48), 6531–
6533; H. M. Chawla and S. P. Singh, Tetrahedron, 2008, 64 (4), 741–
748; S. K. Kim, N. J. Singh, J. Kwon, I.-C. Hwang, S. J. Park, K. S. Kim
and J. Yoon, Tetrahedron, 2006, 62 (25), 6065–6072.
8 J. L. Sessler, J. Cai, H.-Y. Gong, X. Yang, J. F. Arambula and B. P. Hay,
J. Am. Chem. Soc., 2010, 132 (40), 14058–14060; F. Zapata,
A. Caballero, A. Espinosa, A. Tárraga and P. Molina, J. Org. Chem.,
2008, 73 (11), 4034–4044.
9 T.-M. Fu, C.-Y. Wu, C.-C. Cheng, C.-R. Yang and Y.-P. Yen, Sens. Actua-
tors, B, 2010, 146 (1), 171–176; D. Curiel, A. Espinosa, M. Mas-
Montoya, G. Sanchez, A. Tarraga and P. Molina, Chem. Commun., 2009
(48), 7539–7541.
126.0 (CH), 125.7 (CH), 124.6 (Cq), 121.8 (Cq), 120.8 (CH),
119.7 (CH), 118.9 (CH), 117.6 (CH), 111.2 (CH), 110.4 (CH),
42.7 (CH2); HR-MS m/z: Calcd (C34H27N4O2, [M + 1]):
523.2134, Found: 523.2190.
N,N′,N′′-(2,4,6-Triethylbenzene-1,3,5-triyl)tris(methylene)-tris-
(carbazole-2-carboxamide) (3)
This compound was synthesised in a 12% yield using the same
methodology as described for 1. M.p. >300 °C; 1H NMR
(400 MHz, DMSO-d6); δ (ppm) 11.38 (s, 3H), 8.37 (bt, 3H),
8.14–8.11 (m, 6H), 8.00 (s, 3H), 7.69 (dd, 3H, J1 = 1.6 Hz, J2 =
8.6 Hz), 7.49 (d, 3H, J = 8 Hz), 7.41 (td, 3H, J1 = 1.2 Hz, J2 = 8
Hz), 7.16 (t, 3H, J = 7 Hz), 4.64 (d, 6H, J = 3.6 Hz), 2.94 (q,
6H, J = 7.2 Hz), 1.19 (t, 9H, J = 6.8 Hz); 13C NMR (100 MHz,
DMSO-d6); δ (ppm) 166.8 (CvO), 143.8 (Cq), 140.7 (Cq),
139.1 (Cq), 132.2 (Cq), 131.6 (Cq), 126.4 (CH), 124.5 (Cq),
121.8 (Cq), 120.8 (CH), 119.6 (CH), 118.8 (CH), 117.9 (CH),
111.2 (CH), 110.6 (CH), 38.1 (CH2), 22.8 (CH2), 16.3 (CH3);.
HR-MS m/z: Calcd (C54H49N6O3, [M + 1]): 829.3866, Found:
829.3858.
10 T. D. Thangadurai, N. J. Singh, I.-C. Hwang, J. W. Lee, R. P. Chandran
and K. S. Kim, J. Org. Chem., 2007, 72 (14), 5461–5464; J. R. Hiscock,
C. Caltagirone, M. E. Light, M. B. Hursthouse and P. A. Gale, Org.
Biomol. Chem., 2009, 7 (9), 1781–1783; M. J. Chmielewski, M. Charon
and J. Jurczak, Org. Lett., 2004, 6 (20), 3501–3504.
11 All the anions were used as their tetrabutylammonium (TBA) salts.
12 A. W. Freeman, M. Urvoy and M. E. Criswell, J. Org. Chem., 2005, 70
(13), 5014–5019.
13 K. V. Kilway and J. S. Siegel, Tetrahedron, 2001, 57 (17), 3615–3627;
L. A. Cabell, M. D. Best, J. J. Lavigne, S. E. Schneider, D. M. Perreault,
M.-K. Monahan and E. V. Anslyn, J. Chem. Soc., Perkin Trans. 2, 2001
(3), 315–323.
Acknowledgements
Authors gratefully acknowledge the financial support from
MICINN project CTQ2008-01402, and Fundación Séneca
(Agencia de Ciencia y Tecnología de la Región de Murcia)
04509/GERM/06. G. S. is thankful to the Spanish Ministry of
Science and Innovation for the fellowship awarded trough the
project CTQ2008-01402.
14 An estimated water content ≥0.15% was determined for the commercial
deuterated solvent used in these experiments.
15 V. Amendola, D. Esteban-Gómez, L. Fabbrizzi and M. Licchelli, Acc.
Chem. Res., 2006, 39 (5), 343–353; M. Boiocchi, L. Del Boca,
D. Esteban-Gómez, L. Fabbrizzi, M. Licchelli and E. Monzani, Chem.–
Eur. J., 2005, 11 (10), 3097–3104; V. Amendola, M. Boiocchi,
L. Fabbrizzi and A. Palchetti, Chem.–Eur. J., 2005, 11 (19), 5648–5660.
16 V. Amendola, M. Boiocchi, L. Fabbrizzi and A. Palchetti, Chem.–Eur. J.,
2005, 11 (1), 120–127.
17 The initial downfield shift observed during the titration with TBAOH is
due to the polarization of the C–H bond prior to deprotonation of the
adjacent NH group.
18 In the case of receptor 3, the signals suffered an extreme broadening
during the titration after 3 equivalents making impossible its assignment.
However, it was possible to observe the upfield reversion in the signal
corresponding to CH(1).
19 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993 (2), 311–312.
20 The initial endothermic evolution in the calorimetry experiment might be
due to a preorganisation of the tripodal receptor to accommodate the
anion afterwards.
Notes and references
1 A. Bianchi, K. Bowman-James and E. García España, Supramolecular
Chemistry of Anions, Wiley-VCH, New York, 1997; J. Sessler, P. A. Gale
and W.-S. Cho, Anion Receptor Chemistry, Royal Society of Chemistry,
Cambridge, 2006; C. Caltagirone and P. A. Gale, Chem. Soc. Rev., 2009,
38 (2), 520–563; P. A. Gale, Chem. Soc. Rev., 2010, 39 (10), 3746–3771;
Z. Xu, S. K. Kim and J. Yoon, Chem. Soc. Rev., 2010, 39 (5), 1457–
1466; S. K. Kim, D. H. Lee, J.-I. Hong and J. Yoon, Acc. Chem. Res.,
2008, 42 (1), 23–31.
2 S. Kubik, Chem. Soc. Rev., 2010, 39 (10), 3648–3663; S. Kubik,
C. Reyheller and S. Stuewe, J. Inclusion Phenom. Macrocyclic Chem.,
2005, 52 (3–4), 137–187.
3 M. J. Kim, K. M. K. Swamy, K. M. Lee, A. R. Jagdale, Y. Kim, S.-J. Kim,
K. H. Yoo and J. Yoon, Chem. Commun., 2009 (46), 7215–7217.
4 K. Lee and K. Kim, Biotechnol. Lett., 2003, 25 (20), 1739–1742;
T. Tabary, L.-Y. Ju and J. H. M. Cohen, J. Immunol. Methods, 1992, 156
(1), 55–60.
5 R. Villa-Bellosta, X. Wang, J. L. Millan, G. R. Dubyak and
W. C. O’Neill, Am. J. Physiol. – Heart Circulatory Physiol., 2011, 301,
H61–H68; D. A. Prosdocimo, S. C. Wyler, A. M. Romani, W. C. O’Neill
and G. R. Dubyak, Am. J. Physiol.: Cell Physiol., 2010, 298 (3), C702–
C713; D. A. Prosdocimo, D. C. Douglas, A. M. Romani, W. C. O’Neill
and G. R. Dubyak, Am. J. Physiol.: Cell Physiol., 2009, 296 (4), C828–
C839; J. K. Heinonen, Biological Role of Inorganic Pyrophosphate,
Kluwer Academic Publishers, 2001, p. 264; H. Fleisch and S. Bisaz,
Nature, 1962, 195 (4844), 911.
6 A. J. Surman, C. S. Bonnet, M. P. Lowe, G. D. Kenny, J. D. Bell, E. Toth
and R. Vilar, Chem.–Eur. J., 2011, 17 (1), 223–230; K. M. Kim, D. J. Oh
and K. H. Ahn, Chem.–Asian J., 2011, 6 (1), 122–127; G. Ambrosi,
M. Formica, V. Fusi, L. Giorgi, E. Macedi, M. Micheloni, P. Paoli,
R. Pontellini and P. Rossi, Chem.–Eur. J., 2011, 17 (5), 1670–1682;
N. Shao, H. Wang, X. D. Gao, R. H. Yang and W. H. Chan, Anal. Chem.,
2010, 82 (11), 4628–4636; L. Tang, Y. Li, H. Zhang, Z. Guo and J. Qian,
21 The detected complex was doubly charged presumably due to the capture
of a proton during the measurement.
22 Although a 2 : 1 host : guest complex can be part of the multiple equili-
brium, its ephemeral contribution (Fig. 6) only permits the diffusion
coefficient to be measured by following the attenuation of signals corre-
sponding to the 1 : 1 complex. This would explain the continuous
decrease of the diffusion coefficient value.
23 T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger and F. M. Pfeffer,
Coord. Chem. Rev., 2006, 250 (23+24), 3094–3117; R. Martínez-Máñez
and F. Sancenón, Chem. Rev., 2003, 103 (11), 4419–4476.
24 Data at 370 nm were used, where the absorbance of the complex is not
obscured by any other absorption. Data were fitted using Specfit/32
software.
25 R. M. Duke, J. E. O’Brien, T. McCabe and T. Gunnlaugsson, Org.
Biomol. Chem., 2008, 6 (22), 4089–4092.
26 C. Perez-Casas and A. K. Yatsimirsky, J. Org. Chem., 2008, 73 (6),
2275–2284.
27 It is worth recalling that during the NMR titration the carbazole NH
could be detected (Fig. 6).
1904 | Org. Biomol. Chem., 2012, 10, 1896–1904
This journal is © The Royal Society of Chemistry 2012