To explore the spectroscopic response mechanism, the
reaction products of 1 with BPO were subjected to ESI-MS
and HPLC analyses. The ESI-MS spectrum of the reaction
solution of 1 with BPO (Fig. S6, ESIw) shows a peak at m/z =
211.9 ([M À Na]À), which is identical to that of resorufin. On
the other hand, resorufin is further verified as a major final
product by HPLC analysis. As shown in Fig. S7 (ESIw), the
chromatographic peaks of resorufin, BPO, and 1 are located at
4.20 min (peak a in curve A), 16.51 min (peak b in curve B),
and 19.60 min (peak c in curve C), respectively. After reaction
with BPO, the chromatographic peak of 1 decreases markedly,
and several new peaks appear (curve D), among which the
major one at 4.20 min clearly indicates the generation of
resorufin. Based on these data and the existing observation,16
we propose that the reaction of 1 with BPO may proceed
through the route depicted in Scheme 1: BPO oxidizes the
moiety of phenylboronic acid pinacol ester in 1, forming an
unstable intermediate, which is followed by hydrolysis and
1,4-elimination of o-quinone-methide to release the resorufin.
To evaluate the practical applicability of 1 for real samples
such as wheat flour and antimicrobial agent, the possible inter-
ferences of main coexisting species were studied on the detection
of BPO. The tolerable concentration was determined by the
criterion at which a species gave a relative error of no more than
5% in recovery of 15 mM of BPO. The results (Table S1, ESIw)
show that the coexisting species hardly interfere with the BPO
assay. Then, real wheat flour and antimicrobial agent samples
containing BPO were prepared (see ESIw), and the determination
of BPO content in these samples was demonstrated. The results
show that the determination can be completed in about 20 min
due to not requiring a time-consuming separation, and satis-
H. N. Kim, M. J. Kim, C. S. Cho, S. Y. Lee, W. J. Lee and
J. Yoon, Chem. Commun., 2011, 47, 4373–4375.
2 (a) S. H. Ibbotson, M. N. Moran, J. F. Nash and I. E. Kochevar,
J. Invest. Dermatol., 1999, 112, 933–938; (b) S. Fujisawa and
Y. Kadoma, Chemosphere, 2006, 62, 71–79.
3 B. P. Lamsal and J. M. Faubion, LWT–Food Sci. Technol., 2009,
42, 1461–1467.
4 S. R. Feldman, J. Tan, Y. Poulin, T. Dirschka, N. Kerrouche and
V. Manna, J. Am. Acad. Dermatol., 2011, 64, 1085–1091.
5 K. Matyjaszewski and J. H. Xia, Chem. Rev., 2001, 101,
2921–2990.
6 (a) G. Bhasin, H. Kauser and M. Athar, Arch. Toxicol., 2004, 78,
˙
139–146; (b) A. Yavuz, M. Topakta-s and E. S. Istifli, Turk. J. Biol.,
2010, 34, 15–24.
7 Y. Abe-Onishi, C. Yomota, N. Sugimoto, H. Kubota and
K. Tanamoto, J. Chromatogr., A, 2004, 1040, 209–214.
8 X. J. Jia, Y. Wu and P. Liu, Environ. Toxicol. Pharmacol., 2011, 31,
479–484.
9 (a) C. Y. Wang and X. Y. Hu, Anal. Lett., 2005, 38, 2175–2187;
(b) J. V. B. Kozan, R. P. Silva, S. H. P. Serrano, A. W. O. Lima
and L. Angnes, Biosens. Bioelectron., 2010, 25, 1143–1148; (c) M.
D. P. T. Sotomayor, I. L. T. Dias, G. O. Neto and L. T. Kubota,
Anal. Chim. Acta, 2003, 494, 199–205.
10 (a) W. P. Yang, Z. J. Zhang and X. Hun, Talanta, 2004, 62,
661–666; (b) W. Liu, Z. J. Zhang and L. Yang, Food Chem., 2006,
95, 693–698.
11 (a) I. Mori, H. Tominaga, Y. Fujita and T. Matsuo, Anal. Lett.,
1997, 30, 2433–2439; (b) H. Xie, H. Y. Wang, L. Y. Ma and
Y. Xiao, Spectrochim. Acta, Part A, 2005, 62, 197–202;
(c) A. Gupta, M. Gulati and N. K. Pandey, Rasayan J. Chem.,
2009, 2, 649–654.
12 (a) A. I. Saiz, G. D. Manrique and R. Fritz, J. Agric. Food Chem.,
2001, 49, 98–102; (b) P. Dehouck, E. V. Looy, E. Haghedooren,
K. Deckers, Y. V. Heyden, E. Adams, E. Roets and
J. Hoogmartens, J. Chromatogr., B: Anal. Technol. Biomed. Life
Sci., 2003, 794, 293–302; (c) M. Wada, K. Inoue, A. Ihara,
N. Kishikawa, K. Nakashima and N. Kuroda, J. Chromatogr.,
A, 2003, 987, 189–195; (d) Q. H. Wang, W. Z. Shi and C. Y. Hou,
J. Food Process. Preserv., 2010, 34, 414–424.
13 W. Chen, W. Shi, Z. Li, H. M. Ma, Y. Liu, J. H. Zhang and
Q. J. Liu, Anal. Chim. Acta, 2011, 708, 84–88.
factory recovery of BPO even with a low content (50 mg kgÀ1
)
can be obtained (Table S2, ESIw). This indicates that 1 is suitable
for the rapid and sensitive analysis of BPO.
14 (a) X. Q. Chen, M. Sun and H. M. Ma, Curr. Org. Chem., 2006, 10,
477–489; (b) J. X. Lu, C. D. Sun, W. Chen, H. M. Ma, W. Shi and
X. H. Li, Talanta, 2011, 83, 1050–1056; (c) A. Romieu,
D. Tavernier-Lohr, S. Pellet-Rostaing, M. Lemaire and
P.-Y. Renard, Tetrahedron Lett., 2010, 51, 3304–3308.
15 (a) M. Sun, D. H. Shangguan, H. M. Ma, L. H. Nie, X. H. Li,
S. X. Xiong, G. Q. Liu and W. Thiemann, Biopolymers, 2003, 72,
413–420; (b) W. Gao, B. Xing, R. Y. Tsien and J. Rao, J. Am.
Chem. Soc., 2003, 125, 11146–11147; (c) S. Y. Kim and J. I. Hong,
Org. Lett., 2007, 9, 3109–3112; (d) M. G. Choi, S. Cha, J. E. Park,
H. Lee, H. L. Jeon and S. K. Chang, Org. Lett., 2010, 12,
1468–1471; (e) M. G. Choi, J. Hwang, S. Eor and S. K. Chang,
Org. Lett., 2010, 12, 5624–5627.
16 (a) M. C. Y. Chang, A. Pralle, E. Y. Isacoff and C. J. Chang,
J. Am. Chem. Soc., 2004, 126, 15392–15393; (b) E. W. Miller,
A. E. Albers, A. Pralle, E. Y. Isacoff and C. J. Chang, J. Am.
Chem. Soc., 2005, 127, 16652–16659; (c) E. W. Miller,
O. Tulyathan, E. Y. Isacoff and C. J. Chang, Nat. Chem. Biol.,
2007, 3, 263–267; (d) G. C. van de Bittner, E. A. Dubikovskaya,
C. R. Bertozzi and C. J. Chang, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 21316–21321; (e) C. Chung, D. Srikun, C. S. Lim,
C. J. Chang and B. R. Cho, Chem. Commun., 2011, 47, 9618–9620;
(f) A. R. Lippert, G. C. Van de Bittner and C. J. Chang, Acc.
Chem. Res., 2011, 44, 793–804.
In conclusion, we have developed a new resorufin-based probe
for BPO assay. The probe displays a rapid and sensitive color
and a fluorescence off–on response to BPO. Moreover, the
response of the probe is highly selective for BPO over other
common substances, which makes it of great potential use in
simple and quantitative detection of BPO in some real samples
such as wheat flour and antimicrobial agent.
We are grateful for the financial support from the National
Basic Research Program of China (No. 2010CB933502 and
2011CB935800), the NSF of China (No. 21105104 and 20935005),
and the Chinese Academy of Sciences (KJCX2-EW-N06-01).
Notes and references
1 (a) X. H. Li, G. X. Zhang, H. M. Ma, D. Q. Zhang, J. Li and
D. B. Zhu, J. Am. Chem. Soc., 2004, 126, 11543–11548;
(b) E. R. Stadtman, Free Radical Res., 2006, 40, 1250–1258;
(c) E. W. Miller and C. J. Chang, Curr. Opin. Chem. Biol., 2007,
11, 620–625; (d) X. Q. Chen, X. Z. Tian, I. Shin and J. Yoon,
Chem. Soc. Rev., 2011, 40, 4783–4804; (e) B. C. Dickinson and
C. J. Chang, Nat. Chem. Biol., 2011, 7, 504–511; (f) X. Q. Chen,
K. A. Lee, E. M. Ha, K. M. Lee, Y. Y. Seo, H. K. Choi,
17 (a) D. Feng, Y. Y. Zhang, T. T. Feng, W. Shi, X. H. Li and
H. M. Ma, Chem. Commun., 2011, 47, 10680–10682; (b) C. D. Sun,
W. Shi, Y. C. Song, W. Chen and H. M. Ma, Chem. Commun.,
2011, 47, 8638–8640.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2809–2811 2811