Y. Zeng et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1922–1925
1925
22. Whitesell, J. K.; Matthews, R. S.; Minton, M. A.; Helbling, A. M. J. Am. Chem. Soc.
1981, 103, 3468.
23. Pohmakotr, M.; Komutkul, T.; Tuchinada, P.; Prabpai, S.; Kongsaeree, P.;
Reutrakul, V. Tetrahedron 2005, 61, 5311.
24. Song, L.; Chen, Q. H.; She, X. K.; Chen, X. G.; Wang, F. P. J. Asian. Nat. Prod. Res.
2011, 13, 787.
25. White, J. D.; Amedio, J. C.; Gut, J. S.; Ohira, S.; Jayasinghe, L. R. J. Org. Chem. 1992,
57, 2271.
26. Tao, J. C.; Tian, G. Q.; Zhang, Y. B.; Fu, Y. Q.; Dai, G. F.; Wu, Y. Chin. Chem. Lett.
2005, 11, 1441.
27. Kretchmer, R. A.; Thompson, W. J. J. Am. Chem. Soc. 1976, 98, 3379.
28. Yang, L. M.; Hsu, F. L.; Chang, S. F.; Cheng, J. T.; Hsu, J. Y.; Hsu, C. Y.; Liu, P. C.;
Lin, S. J. Phytochemistry 2007, 68, 562.
29. Cytotoxicity assay in vitro: The human cancer cell lines were provided by Mr.
Yangchang Wu research group (China Medical University) and maintained in a
humidified atmosphere at 37 °C in 5% CO2. The cells were cultured in RPMI-
shown significant cytotoxities against all the six cell lines with the
IC50 values ranging from 0.09 to 5.71 M. Compounds 1a and 1c
l
were found to be more effective than doxorubicin hydrochloride
in HCT-116, MDA-MB-231, HepG2 and MGC803 cell lines. Esterifi-
cation of 19-acid with MOM ether or methyl improved the cytotox-
icity (1a vs 1b, 1b vs 1c), while esterification of 19-acid with
propyl, allyl and benzyl group decreased the activity (1b vs 1d,
1b vs 1e, 1b vs 1f). Compound 1f showed selective inhibition
against K562 (IC50 = 6.23 lM) and MGC803 (IC50 = 2.12 lM) cell
lines. Compound 1g with the 13-hydrogen acylated exhibited
slightly higher activity compared to compound 1f. On the contrary,
removing the 19-acetyl of 2a afforded 2b with better cytotoxity
against all the cell lines except HCT-116. Compared with 1h, com-
1640 media containing 10% FBS, 100 IU/mL penicillin and 100 lg/mL
streptomycin. Cell cytotoxity was determined by MTT assay. Briefly, cells
were seeded in 96-well-plate (1 Â 104 cells/well) and incubated for 48 h. Then,
the tested compounds with various concentrations were added to the wells
and 48 h later the MTT solution (0.5 mg/mL) was added and incubated for 4 h.
Two hundred microliters of DMSO was added to each well to dissolve the
reduced MTT crystals. The absorbance of each well was measured at 570 nm
with a microplate reader.
pound 1f bearing the
activity, which indicated that
an important role in their anticancer activities. However, the com-
pounds (3a–e) with the isosteviol scaffold exhibited weak
activities.
a
-methylenelactone group displayed better
a
-methylenelactone group played
In summary, we have successfully synthesized three scaffolds of
30. Selected spectral data for compounds 1a–2b: Compound 1a: white solid, mp
172–174 °C; IR (KBr, cmÀ1) 3415, 2952, 2928, 2879, 1731, 1717, 1696, 1629,
1466, 1384, 1370, 1311, 1170, 1136, 1073, 1035, 999, 942; 1H NMR (300 MHz,
CDCl3) d: 6.56(s, 1H), 6.07(s, 1H), 5.29(d, J=6 Hz, 1H), 5.16(d, J = 6 Hz, 1H),
3.49(s, 3H), 2.35(d, J = 13.2 Hz, 1H), 2.26(d, J = 13.41 Hz, 1H), 1.98–2.04(m, 3H),
1.86–1.94(m, 4H), 1.43–1.83(m, 6H), 1.26(s, 3H), 0.91–1.21(m, 3H), 0.88(s, 3H);
13C NMR (75 MHz, CDCl3) d: 176.6, 165.4, 143.3, 125.8, 90.5, 84.9, 70.3, 57.9,
56.1, 50.2, 43.9, 42.6, 41.7, 40.9, 39.7, 38.1, 37.4, 28.8, 20.6, 19.1, 18.8, 16.4; ESI/
MS: 393 [M+H]+; HRMS: calcd for C22H32NaO6 [M+Na]+ 415.2091, found
415.2102. Compound 1b: white solid, mp 218–220 °C; IR (KBr, cmÀ1) 3539,
3423, 3221, 2957, 2868, 1704, 1630, 1467, 1385, 1370, 1353, 1292, 1264, 1234,
1202, 1164, 1095, 999, 970, 956, 812, 499; 1H NMR (300 MHz, DMSO-d6) d:
12.1(s, 1H), 6.26(d, J = 1.77 Hz, 1H), 5.94(d, J = 1.1 Hz, 1H), 2.20(d, J = 13.38 Hz,
1H), 2.04(d, J = 12.93 Hz, 1H), 1.77–1.90(m, 5H), 1.61–1.75(m, 4H), 1.41–
1.45(m, 1H), 1.33(m, 1H), 1.18–1.27(m, 2H), 1.14(s, 3H), 0.93–1.05(m, 2H),
0.88(s, 3H), 0.74–0.85(m, 1H); 13C NMR (75 MHz, DMSO-d6) d: 178.5, 164.7,
144.1, 124.6, 84.4, 68.6, 54.9, 50.1, 42.6, 41.6, 41.2, 40.4, 39.2, 38.3, 37.1, 28.4,
20.4, 18.9, 18.5, 15.9; ESI/MS: 331 [M+1–H2O]+. Compound 1c: white solid, mp
200ꢀ202 °C; IR (KBr, cmÀ1) 3437, 2954, 2928, 2868, 1721, 1697, 1625, 1456,
1437, 1371, 1307, 1291, 1237, 1202, 1167, 1149, 1118, 1083, 1039, 995, 971;
1H NMR (300 MHz, CDCl3) d: 6.55(s, 1H), 6.07(s, 1H), 3.65(s, 3H), 2.35(d,
J = 13.2 Hz, 1H), 2.23(d, J = 13.32 Hz, 1H), 1.96–2.0(m, 2H), 1.85–1.91(m, 4H),
1.76–1.82(m, 2H), 1.62–1.74(m, 2H), 1.25–1.58(m, 4H), 1.21(s, 3H), 1.03–
1.18(m, 1H), 0.93–1.00(m, 1H), 0.85(s, 3H); 13C NMR (75 MHz, CDCl3) d: 177.6,
165.4, 143.3, 125.8, 85.0, 70.3, 56.0, 51.3, 50.2, 43.6, 42.5, 41.7, 40.9, 39.6, 38.1,
37.5, 28.7, 20.6, 19.1, 18.8, 16.2; ESI/MS: 380 [M+NH4]+; HRMS: calcd for
tetracyclic diterpenoids bearing the
and evaluated their anticancer activities against six cell lines. We
also proved that -methylenelactone group was essential for the
a-methylenelactone moiety
a
bioactivity of the compound, which was consistent with the previ-
ous literature.11 Compound 2b was found to be the most potent
compound in HepG2 with IC50 value of 0.09 lM. Further researches
on identifying their cellular targets are ongoing in our laboratory
and the results will be reported in due course.
Acknowledgment
We thank the National Natural Science Foundation of China
(No. 30973607 and No. 81172934) for financial support.
References and notes
1. Wang, T. T.; Liu, J.; Zhong, H. Y.; Chen, H.; Lv, Z. L.; Zhang, Y. K.; Zhang, M. F.;
Geng, D. P.; Niu, C. J.; Li, Y. M.; Li, K. Bioorg. Med. Chem. Lett. 2011, 21, 3381.
2. Sangthong, S.; Krusong, K.; Ngamrojanavanich, N.; Vilaivan, T.; Puthong, S.;
Chandchawan, S.; Muangsin, N. Bioorg. Med. Chem. Lett. 2011, 21, 4813.
3. Brusick, D. J. Food Chem. Toxicol. 2008, 46, S83.
C
21H30NaO5 [M+Na]+ 385.1985, found 385.1996. Compound 1f: colorless oil, IR
(KBr, cmÀ1) 3427, 2956, 2932, 2871, 1718, 1627, 1455, 1370, 1351, 1275, 1259,
1231, 1207, 1163, 1141, 1092, 999, 996, 806, 755, 745, 699; 1H NMR (300 MHz,
CDCl3) d: 7.34(m, 5H), 6.54(s, 1H), 6.05(s, 1H), 5.15(d, J = 12.34 Hz, 1H), 5.04(d,
J = 12.33 Hz, 1H), 2.25(d, J = 13.17 Hz, 1H), 1.68–2.00(m, 9H), 1.57–1.63(m, 2H),
1.45–1.55(m, 3H), 1.24(s, 3H), 0.92–1.22(m, 3H), 0.76(s, 3H); 13C NMR
(75 MHz, CDCl3) d: 176.8, 165.3, 143.3, 135.8, 128.5, 128.3(2), 128.2(2),
125.8, 84.9, 70.4, 66.1, 56.2, 50.1, 43.76, 42.5, 41.7, 40.9, 39.6, 38.1, 37.5,
28.8, 20.6, 19.1, 18.8, 16.3; ESI/MS: 461 [M+Na]+. Compound 2a: white solid,
mp 152–154 °C; IR (KBr, cmÀ1) 3433, 2935, 2866, 1717, 1654, 1629, 1458,
1384, 1374, 1307, 1275, 1260, 1241, 1159, 1090, 1036, 1000; 1H NMR
(300 MHz, CDCl3) d: 6.48(s, 1H), 6.00(s, 1H), 4.11(d, J = 11.1 Hz, 1H), 3.83(d,
J = 11 Hz, 1H), 2.26(d, J = 13.2 Hz, 1H), 1.98(s, 3H), 1.82–1.94(m, 5H), 1.71–
1.81(m, 2H), 1.58–1.67(m, 2H), 1.36–1.53(m, 4H), 1.26–1.32(m, 1H), 1.15–
1.23(m, 1H), 1.03–1.09(m, 1H), 0.99(s, 3H), 0.93(s, 3H), 0.78–0.90(m, 1H); ESI/
MS: 375 [MÀH]À. 2b: white solid, 92–94 °C; IR (KBr, cmÀ1) 3424, 2961, 2930,
2870, 1701, 1626, 1475, 1446, 1384, 1369, 1348, 1307, 1267, 1174, 1164, 1029,
1000; 1H NMR (300 MHz, DMSO-d6) d: 6.26(s, 1H), 5.94(s, 1H), 3.45–3.51(m,
1H), 3.16–3.22(m, 1H), 2.22(d, J = 13.4 Hz, 1H), 1.80–1.98(m, 4H), 1.67–1.76(m,
4H), 1.42–1.54(m, 3H), 1.23–1.36(m, 3H), 1.18(m, 1H), 1.03–1.15(m, 1H),
0.99(s, 3H), 0.89(s, 3H), 0.83(m, 1H); 13C NMR (75 MHz, DMSO-d6) d: 164.7,
144.3, 124.5, 84.6, 68.6, 63.0, 55.5, 51.1, 43.5, 41.8, 41.7, 40.1, 39.2, 38.3, 35.1,
27.7, 18.8, 18.4, 18.0, 17.7; ESI/MS: 333 [MÀH]À; HRMS: calcd for C40H60NaO8
[2M+Na]+ 691.4180, found 691.4207.
4. Geuns, J. M. C. Phytochemistry 2003, 64, 913.
5. Ogawa, T.; Nozaki, M.; Matsui, M. Tetrahedron 1980, 36, 2641.
6. Mosettig, E.; Beglinger, U.; Dolder, F.; Lichti, H.; Quitt, P.; Waters, J. A. J. Am.
Chem. Soc. 1963, 85, 2305.
7. Chatsudthipong, V.; Muanprasat, C. Pharmacol. Therapeut. 2009, 121, 41.
8. Takasaki, M.; Konoshima, T.; Kozuka, M.; Tokuda, H.; Takayasu, J.; Nishino, H.;
Miyakoshi, M.; Mizutani, K.; Lee, K. H. Bioorg. Med. Chem. Lett. 2009, 17, 600.
9. Li, J.; Zhang, D. Y.; Wu, X. M. Bioorg. Med. Chem. Lett. 2011, 21, 130.
10. Wu, Y.; Dai, G. F.; Yang, J. H.; Zhang, Y. X.; Zhu, Y.; Tao, J. C. Bioorg. Med. Chem.
Lett. 1818, 2009, 19.
11. Hoffmann, H. M. R.; Babe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94.
12. Grieco, P. A. Synthesis 1975, 67.
13. Petragnani, N.; Ferraz, H. M. C.; Silva, G. V. J. Synthesis 1986, 157.
14. Kupchan, S. M.; Fessler, D. C.; Eakin, M. A.; Giacobbe, T. J. Science 1970, 168,
376.
15. Sun, C. M.; Syu, W. J.; Don, M. J.; Lu, J. J.; Lee, G. H. J. Nat. Prod. 2003, 66, 1175.
16. Kupchan, S. M.; Hemingway, R. J.; Werner, D.; Karim, A. J. Org. Chem. 1969, 34,
3903.
17. Cui, Y. M.; Yasutomi, E.; Otani, Y.; Yoshinaga, T.; Katsutoshi, I.; Sawada, K.;
Ohwada, T. Bioorg. Med. Chem. Lett. 2008, 18, 5197.
18. Blay, G.; Garcia, B.; Molina, E.; Pedro, J. R. Tetrahedron 2007, 39, 9621.
19. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 5, 399.
20. Tamura, R.; Watabe, K.; Kamimura, A.; Hori, K.; Yokomori, Y. J. Org. Chem. 1992,
57, 4903.
21. Adam, W.; Carballeira, N.; Peters, E. M.; Peters, K.; Schnering, H. G. J. Am. Chem.
Soc. 1983, 105, 5132.