250
W. Wang et al. / Electrochimica Acta 65 (2012) 244–250
4. Conclusions
[14] M. Chirea, A. Cruz, C.M. Pereira, A.F. Silva, J. Phys. Chem. C 113 (2009) 13077.
[15] S. Sek, A. Misicka, R. Bilewicz, J. Phys. Chem. B 104 (2000) 5399.
[16] W. Tu, K. Takai, K. Fukui, A. Miyazaki, T. Enoki, J. Phys. Chem. B 107 (2003)
10134.
[17] M. Kozaki, K. Akita, K. Okada, Org. Lett. 9 (2007) 1509.
[18] T.H. Xu, R. Lu, X.L. Liu, X.Q. Zheng, X.P. Qiu, Y.Y. Zhao, Org. Lett. 9 (2007) 797.
[19] Y. Morishima, H. Aota, K. Saegusa, M. Kamachi, Macromolecules 29 (1996)
6505.
[20] J.P. Yang, P.C. Huang, J. Appl. Polym. Sci. 77 (2000) 484.
[21] L.J. Zhu, J. Wang, T.G. Reng, G.Y. Li, D.C. Guo, C.C. Guo, J. Phys. Org. Chem. 23
(2010) 190.
[22] S. Kang, T. Umeyama, M. Ueda, Y. Matano, H. Hotta, K. Yoshida, S. Isoda, M.
Shiro, H. Imahori, Adv. Mater. 18 (2006) 2549.
[23] F. Zhang, V. Roznyatovskiy, F.F. Fan, V. Lynch, J.L. Sessler, A.J. Bard, J. Phys. Chem.
C 115 (2011) 2592.
[24] M.A. Mezour, R. Cornut, E.M. Hussien, M. Morin, J. Mauzeroll, Langmuir 26
(2010) 13000.
[25] A.J. Bard, M.V. Mirkin, P.R. Unwin, D.O. Wipf, J. Phys. Chem. 96 (1992) 1861.
[26] P.R. Unwin, A.J. Bard, J. Phys. Chem. 95 (1991) 7814.
[27] M.V. Mirkin, B.R. Horrocks, Anal. Chim. Acta 406 (2000) 119.
[28] R. Martin, P.R. Unwin, Anal. Chem. 70 (1998) 276.
[29] W.T. Wang, D.L. Shan, Y. Yang, C.C. Wang, Y.Q. Hu, X.Q. Lu, Chem. Commun. 47
(2011) 6975.
Kinetic investigations on the two kinds of functional porphyrin
SAMs on a gold electrode using SECM were completed. In both
cases, the porphyrins were the focus of the study. Alkanethiols were
prepared and used as the template on the gold electrode. The opti-
mized self-assembly time of the alkanethiols was different for the
two alkyl chains with different chain lengths. The template strongly
affected the ꢁ and molecular area of the porphyrin compounds and
significantly affected the ET kinetics of the porphyrins. In addition,
the porphyrin SAMs were coordinated with the Co metal in the
center of the porphyrin rings. In the presence of Co, the rate con-
stant of ET clearly increased because of the changes in the orbital
energy, the distortion of the porphyrin ring, and the existence of an
additional ET channel.
Acknowledgments
[30] X.Q. Lu, P. Sun, D.N. Yao, B.W. Wu, Z.H. Xue, X.B. Zhou, R.P. Sun, L. Li, X.H. Liu,
Anal. Chem. 82 (2010) 8598.
[31] X.Q. Lu, T.X. Wang, X.B. Zhou, Y. Li, B.W. Wu, X.H. Liu, J. Phys. Chem. C 115 (2011)
4800.
[32] W.T. Wang, X.J. Li, X.Y. Wang, H. Shang, X.H. Liu, X.Q. Lu, J. Phys. Chem. B 114
(2010) 10436.
[33] Q. Wang, F.P. Zhi, W.T. Wang, X.H. Xia, X.H. Liu, F.F. Meng, Y.Y. Song, C. Yang,
X.Q. Lu, J. Phys. Chem. C 113 (2009) 9359.
This work was supported by the Natural Science Foundation
of China (Nos. 20775060, 20875077 and 20927004), the Natural
Science Foundation of Gansu (No. 0701RJZA109) and Key Projects
of Scientific Research Base of Department of Education, Gansu
Province (No. 08zx-07) of China.
[34] G.F. Zuo, X.H. Liu, J.D. Yang, X.J. Li, X.Q. Lu, J. Electroanal. Chem. 605 (2007) 81.
[35] X.Q. Lu, B.Q. Lv, Z.H. Xue, M. Zhang, Y.S. Wang, J.W. Kang, Anal. Lett. 35 (2002)
1811.
Appendix A. Supplementary data
[36] N. Nishimura, M. Ooi, K. Shimazu, J.H. Fu, K.J. Uosaki, Electroanal. Chem. 473
(1999) 75.
[37] M. Tsionsky, J.F. Zhou, S. Amemiya, F.-R.F. Fan, A.J. Bard, Anal. Chem. 71 (1999)
4300.
Supplementary data associated with this article can be found, in
[38] Y. Shao, M.V. Mirkin, J. Phys. B 102 (1998) 9915.
[39] F. Forouzan, A.J. Bard, M.V. Mirkin, Isr. J. Chem. 37 (1997) 155.
[40] L. Biao, A.J. Bard, M.V. Mirkin, S.E. Creager, J. Am. Chem. Soc. 126 (2004) 1485.
[41] A. Kiani, M.A. Alpuche-Aviles, P.K. Eggers, M. Jones, J.J. Gooding, M.N. Paddon-
Row, A.J. Bard, Langmuir 24 (2008) 2841.
References
[1] I.O. Benitez, B. Bujoli, L.J. Camus, C.M. Lee, F. Odobel, D.R. Talham, J. Am. Chem.
Soc. 124 (2002) 4363.
[2] F.P. Zhi, X.Q. Lu, J.D. Yang, X.Y. Wang, H. Shang, S.H. Zhang, Z.H. Xue, J. Phys.
Chem. C 113 (2009) 13166.
[3] V. Chukharev, T. Vuorinen, A. Efimov, N.V. Tkachenko, Langmuir 21 (2005) 6385.
[4] M.Y. Duan, J. Li, G. Mele, C. Wang, X.F. Lu, G. Vasapollo, F.X. Zhang, J. Phys. Chem.
C 114 (2010) 7857.
[5] Z.J. Zhang, S.F. Hou, Z.H. Zhu, Z.F. Liu, Langmuir 16 (2000) 537.
[6] X.Q. Lu, L.M. Zhang, M.R. Li, X.Q. Wang, Y. Zhang, X.H. Liu, G.F. Zuo,
ChemPhysChem 7 (2006) 854.
[7] Z.J. Zhang, R.S. Hu, Z.F. Liu, Langmuir 16 (2000) 1158.
[8] Z.J. Zhang, T. Imae, Langmuir 17 (2001) 4564.
[9] S.Z. Zou, R.S. Clegg, F.C. Anson, Langmuir 18 (2002) 3241.
[10] G. Li, T. Wang, A. Schulz, S. Bhosale, M. Lauer, P. Espindola, J. Heinze, J.H.
Fuhrhop, Chem. Commun. 5 (2004) 552.
[11] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105
(2005) 1103.
[12] N. Phares, R.J. White, K.W. Plaxco, Anal. Chem. 81 (2009) 1095.
[13] S.Q. Lud, S. Neppl, G. Richter, P. Bruno, D.M. Gruen, R. Jordan, P. Feulner, M.
Stutzmann, J.A. Garrido, Langmuir 26 (2010) 15895.
[42] X.Q. Lu, F.P. Zhi, H. Shang, X.Y. Wang, Z.H. Xue, Electrochim. Acta 601 (2007)
10.
[43] C.H. Hamann, A. Hamnett, W.V. Weinheim, Electrochemistry, Wiley-VCH, New
York, Chichester,Brisbane, Singapore and Toronto, 1998.
[44] D.B. Robinson, E.D. Chidsey, J. Electroanal. Chem. 438 (1997) 121.
[45] H. Imahori, H. Norieda, S. Ozawa, Langmuir 14 (1998) 5335.
[46] A. Ulman, Chem. Rev. 96 (1996) 1533.
[47] J.M. Tour, L. Jones, D.L. Pearson, J.J.S. Lamba, T.P. Burgin, G.M. Whitesides, D.L.
Allara, A.N. Parikh, S. Atre, J. Am. Chem. Soc. 117 (1995) 9529.
[48] M.H. Zareie, H. Ma, B.W. Reed, A.K.Y. Jen, M. Sarikaya, Nano Lett. 3 (2003)
139.
[49] Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37 (1998) 550.
[50] Z.F. Liu, K. Hashimoto, A. Fujishima, Nature 347 (1990) 658.
[51] D. Jones, A.S. Hinman, Dalton Trans. 21 (1992) 1503.
[52] M.K. Geno, J. Halpern, J. Am. Chem. Soc. 109 (1987) 1238.
[53] X.Q. Lu, M.R. Li, C.H. Yang, L.M. Zhang, L. Jiang, H.X. Li, L. Jiang, C.M. Liu, W.P.
Hu, Langmuir 22 (2006) 3035.