38
A.-Q. Jia et al. / Journal of Organometallic Chemistry 705 (2012) 34e38
38.4 [s, PPh3] ppm. 1H NMR (CDCl3): 2.28 [s, Me, 3H], 5.90 [d, im-
CH, 1H, J ¼ 2.0 Hz], 6.26 [d, im-CH, 1H, J ¼ 1.6 Hz], 6.69 [d, C6H4, 2H,
J ¼ 8.8 Hz], 7.03 [d, C6H4, 2H, J ¼ 8.0 Hz], 7.22e7.28, 7.58e7.63
Acknowledgments
This project was supported by the Natural Science Foundation of
China (20771003) and the Hong Kong Research Grants Council
(project no. 601708).
[m ꢂ 2, PC6H5, 30H] ppm. 13C NMR (CDCl3):
d 206.2 [t, CO,
JCP ¼ 15.8 Hz], 152.0 [s, NCN], 136.8 [s, ipso-C6H4], 134.9 [t, o/m-
PC6H5, JCP ¼ 5.5 Hz], 134.1 [s, o/m-C6H4], 133.1 [t, ipso-PC6H5,
JCP ¼ 21.7 Hz], 130.1 [s, o/m-C6H4], 129.9 [s, p-PC6H5], 128.1 [t, o/m-
PC6H5, JCP ¼ 4.8 Hz], 125.6 [s, p-C6H4], 121.8 [s, NC4H], 114.9 [s,
NC5H], 21.4 [s, Me] ppm. Anal. Calc. for C47H39ClN2OP2RuS: C 64.27;
H 4.48; N 3.19; Found: C, 64.19; H, 4.44; N, 3.23. For 3c, 38.6 mg,
Appendix A. Supplementary material
CCDC 854737e854740 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.
yield (85%). IR (KBr): 1940
n .
(CO) cmꢀ1 31P NMR (CDCl3): 38.2 [s,
PPh3] ppm. 1H NMR (CDCl3): 6.03 [d, im-CH, 1H, J ¼ 1.6 Hz], 6.32 [d,
im-CH, 1H, J ¼ 1.6 Hz], 6.71 [d, C6H4, 2H, J ¼ 3.7 Hz], 7.24e7.29,
7.57e7.62 [m
ꢂ
2, PC6H5, 30H], 8.12 [d, C6H4, 2H,
J ¼ 3.6 Hz] ppm. 13C NMR (CDCl3):
d
205.3 [t, CO, JCP ¼ 15.3 Hz],
References
152.9 [s, NCN], 145.1 [s, ipso-C6H4], 141.2 [s, p-C6H4], 134.4 [t, o/m-
PC6H5, JCP ¼ 5.4 Hz], 132.4 [t, ipso-PC6H5, JCP ¼ 21.9 Hz], 129.6 [s, p-
PC6H5], 127.6 [t, o/m-PC6H5, JCP ¼ 4.8 Hz], 126.3 [s, o/m-C6H4], 124.9
[s, o/m-C6H4], 120.6 [s, NC4H], 113.4 [s, NC5H] ppm. Anal. Calc. for
C46H36ClN3O3P2RuS: C 60.72; H 3.99; N 4.62; Found: C, 60.45; H,
4.03; N, 4.67.
[1] M.R. Torres, A. Vegas, A. Santos, J. Ros, J. Organomet. Chem. 309 (1986)
169e177.
[2] M.R. Torres, A. Perales, J. Ros, Organometallics 7 (1988) 1223e1224.
[3] H. Loumrhari, J. Ros, M.R. Torres, A. Santos, A.M. Echavarren, J. Organomet.
Chem. 411 (1991) 255e261.
[4] B. Gómez-Lor, A. Santos, M. Ruiz, A.M. Echavarren, Eur. J. Inorg. Chem. (2001)
2305e2310.
[5] H. Xia, T.B. Wen, Q.Y. Hu, G. Jia, Organometallics 24 (2005) 562e569.
[6] S.K. Seetharaman, M.-C. Chung, U. Englich, K. Ruhlandt-Senge, M.B. Sponsler,
Inorg. Chem. 46 (2007) 561e567.
3.4. Preparation of [(CO)(PPh3)(CHNCH2Ph)Ru(m-Cl)2(m-S)
RuCl(CO)(PPh3)] (4a)
[7] S. Jung, C.D. Brandt, J. Wolf, H. Werner, Dalton Trans. (2004) 375e383.
[8] D.J. Huang, K.B. Renkema, K.G. Caulton, Polyhedron 25 (2006) 459e468.
ꢀ
[9] M. Pichlmaier, R.F. Winter, M. Zabel, S. Zális, J. Am. Chem. Soc. 131 (2009)
To
a solution of [Ru(CH]CHPh)Cl(CO)(PPh3)2] (40.0 mg,
4892e4903.
0.05 mmol) in dichloromethane (10 mL) was added 1-4-chloro-
phenyl-2-mercaptoimidazole (10.5 mg, 0.05 mmol), the mixture
was then stirred at room temperature overnight to yield a yellow
solution. The solvent was evaporated in vacuum and washed with
n-hexane. Pure 4a was obtained by crystallization in dichloro-
[10] X.-H. Wu, J.H. Liang, J.-L. Xia, S. Jin, G.-A. Yu, S.H. Liu, Organometallics 29
(2010) 1150e1156.
[11] Y. Maruyama, K. Yamamura, T. Sagawa, H. Katayama, F. Ozawa, Organome-
tallics 19 (2000) 1308e1318.
[12] A.F. Hill, C.T. Ho, J.D.E.T. Wilton-Ely, Chem. Commun. (1997) 2207e2208.
[13] J.D.E.T. Wilton-Ely, P.J. Pogorzelec, S.J. Honarkhah, D.A. Tocher, Organome-
tallics 24 (2005) 2862e2874.
[14] S. Naeem, A.L. Thompson, L. Delaude, J.D.E.T. Wilton-Ely, Chem. Eur. J. 16
(2010) 10971e10974.
[15] J.D.E.T. Wilton-Ely, S.J. Honarkhah, M. Wang, D.A. Tocher, A.M.Z. Slawin,
Dalton Trans. (2005) 1930e1939.
[16] J.C. Green, A.L. Hector, A.F. Hill, S. Lin, J.D.E.T. Wilton-Ely, Organometallics 27
(2008) 5548e5558.
[17] S. Naeem, A.L. Thompson, A.J.P. White, L. Delaudec, J.D.E.T. Wilton-Ely, Dalton
Trans. 40 (2011) 3737e3747.
[18] J.D.E.T. Wilton-Ely, M. Wang, S.J. Honarkhah, D.A. Tocher, Inorg. Chim. Acta
358 (2005) 3218e3226.
methane/n-hexane. Yield: 18.0 mg (30%). IR (KBr): 1918, 1921
n
(CO) cmꢀ1
.
31P NMR (CDCl3): 45.5, 42.1 [s ꢂ 2, PPh3] ppm. 1H NMR
(CDCl3): 7.98e7.00 [m, Ph þ C6H4, 36H], 6.76 [d, im-CH, 1H,
J ¼ 2.0 Hz], 6.28 [d, C6H4, 2H, J ¼ 7.2 Hz], 6.22 [m, 1H, Ph], 5.52 [br,
im-CH, 1H], 4.27 [m, RuCHCH2Ph, 1H], 2.77 [m, RuCHCH2Ph,
2H] ppm. Anal. Calc. for C55H44Cl4N2O2P2SRu2: C 54.92; H 3.69; N
2.33; Found: C, 55.01; H, 3.65; N, 2.37.
3.5. X-ray diffraction measurements
[19] A. Cingolani, E.F. Marchetti, C. Pettinari, B.W. Skelton, A.H. White, Inorg. Chem.
41 (2002) 1151e1161.
[20] Y. Matsunaga, K. Fujisawa, N. Amir, Y. Miyashita, K.-I. Okamoto, J. Coord.
Chem. 58 (2005) 1047e1061.
[21] F. Isaia, M.C. Aragoni, A. Garau, V. Lippolis, A. Pintus, Dalton Trans. 40 (2011)
4505e4513.
[22] R.D. Dewhurst, A.R. Hansen, A.F. Hill, M.K. Smith, Organometallics 25 (2006)
5843e5846.
[23] M. Jimenez-Tenorio, M.C. Puerta, P. Valerga, Organometallics 28 (2009)
2787e2798.
[24] J.G. Melnick, K. Yurkerwich, G. Parkin, Inorg. Chem. 48 (2009) 6763e6772.
[25] A. Beheshti, W. Clegg, R. Khorramdin, V. Nobakht, L. Russo, Dalton Trans. 40
(2011) 2815e2821.
[26] T. Bekele, S.R. Brunette, M.A. Lipton, J. Org. Chem. 68 (2003) 8471e8479.
[27] M.L. Buil, M.A. Esteruelas, E. Goni, M. Oliván, E. Oñate, Organometallics 25
(2006) 3076e3083.
[28] K. Matsuda, I. Yanagisawa, Y. Isomura, Synth. Commun. 27 (1997) 3565e3571.
[29] G.M. Sheldrick, SADABS, University of Göttingen, Germany, 1996.
[30] SMART and SAINTþ for Windows NT Version 6.02a, Bruker Analytical X-ray
Instruments Inc., Madison, WI, 1998.
[31] G.M. Sheldrick, SHELXTL Software Reference Manual, Version 5.1, Bruker AXS
Inc., Madison, WI, 1997.
Intensity data were collected on a Bruker SMART APEX 2000
CCD diffractometer using graphite-monochromated Mo
Ka
radiation (
l
¼ 0.71073 Å). The collected frames were processed
with the software SAINT [29]. The data were corrected for
absorption using the program SADABS [30]. Structures were
solved by direct methods and refined by full-matrix least-
squares on F2 using the SHELXTL software package [31,32].
All non-hydrogen atoms were refined anisotropically. The posi-
tions of all hydrogen atoms were generated geometrically
(Csp3eH ¼ 0.96, Csp2eH ¼ 0.93), assigned isotropic thermal
parameters, and allowed to ride on their respective parent
carbon or oxygen atoms before the final cycle of least-squares
refinement. One phenyl in 3c$CH2Cl2 was isotropically refined
due to disorder. Crystallographic data and experimental details
for 3a$0.5C6H12, 3b$0.5C6H12, 3c$CH2Cl2 and 4a$CH2Cl2 are
given in Table 1.
[32] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112e122.