1890
I. Yavari et al. / Tetrahedron Letters 53 (2012) 1889–1890
R
Cu
5
CuI (10 mol%), Et3N
DMF, rt, 6 h
C
N
O
O
R"
R
N
R
S
O
O
N
Ph
S
R'
1
R'
N3
6
NH
O
O
S
Cl
N
Ph
R"
N
Ph
Et3N
N
H
N
R'
R"
2
3
4
R'
Entry
R
Product
R"
Yield (%)
p-tolyl
p-tolyl
4a
4b
4c
4d
4e
4f
91
87
81
90
85
83
84
80
79
69
66
68
65
60
p-tolyl
Ph
1
Ph
2
Ph
p-tolyl
Me
3
Ph
p-tolyl
Ph
4-ClC6H4
4-ClC6H4
4-ClC6H4
4
Ph
5
Ph
Me
6
Ph
4g
4h
4i
7
Ph
p-tolyl
Ph
Ph
8
Ph
Ph
9
Ph
Me
Ph
4j
10
11
12
13
14
n-Bu
n-Bu
n-Pr
n-Pr
n-Pr
Ph
p-tolyl
4k
4l
p-tolyl
p-tolyl
p-tolyl
Me
4-ClC6H4
4-ClC6H4
4m
4n
Ph
Ph
Scheme 1. Synthesis of compounds 4.
5. Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
6. Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
7. Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. Org. Lett. 2006, 8, 1347.
8. Cho, S. H.; Chang, S. Angew. Chem., Int. Ed. 2008, 47, 2836.
9. Shang, Y. J.; Ju, K.; He, X. W.; Hu, J. S.; Yu, S. Y.; Zhang, M.; Liao, K. S.; Wang, L. F.;
Zhang, P. J. Org. Chem. 2010, 75, 5743.
R
Cu
R'-N3
6
_
CuI
N2
5
R
Cu
N
N
R'
N
10. Wang, J.; Wang, J. J.; Zhu, Y. X.; Lu, P.; Wang, Y. G. Chem. Commun. 2011, 47,
3275.
8
7
11. Yavari, I.; Ahmadian, S.; Ghazanfarpur, M.; Solgi, Y. Tetrahedron Lett. 2011, 52,
668.
12. Li, Y.; Hong, D.; Zhu, Y.; Lu, P.; Wang, Y. Tetrahedron 2011, 67, 8086.
13. Smith, M. B.; March, J. March’s Advanced Organic Chemistry: Reactions,
Mechanisms, and Structure, 6th ed.; John Wiley & Sons, Inc., 2007. p 1189.
14. Foti, F.; Grassi, G.; Risitano, F. Tetrahedron Lett. 1999, 40, 2605.
15. Yildirim, M.; Dürüst, Y. Tetrahedron 2011, 67, 3209.
3
Et3N
R"
N
Ph
16. General procedure for the synthesis of compounds 4: The corresponding
N
hydrazonoyl chloride
3 (1 mmol) and Et3N (1.2 mmol) were dissolved in
R"
R
N
DMF (3 mL) and stirred for 10 min. Next, a mixture of the sulfonyl azide 6,
(1.2 mmol), alkyne 5 (1 mmol), CuI (0.1 mmol), and Et3N (1 mmol) in DMF
(2 mL) was added with stirring at room temperature under N2 atmosphere.
After completion of the reaction [about 6 h; TLC (EtOAc/hexane, 1:5)
monitoring], the mixture was diluted with CH2Cl2 (2 mL) and aqueous
NH4Cl solution (3 mL), stirred for 30 min, and the layers separated. The
aqueous layer was extracted with CH2Cl2 (3 Â 3 mL) and the combined
organic fractions dried (Na2SO4) and concentrated under reduced pressure.
The residue was purified by flash column chromatography [silica gel (230–
400 mesh; Merck), hexane/EtOAc, 5:1] to give the product. The spectroscopic
data for compounds 4a, 4g, 4h, and 4i were similar to those reported by
Wang.12
Cu
R
H2O
2
4
N
Ph
C
C NR'
[3+2] cycloaddition
Cu
NR'
9
1
Scheme 2. A plausible mechanism for the formation of compounds 4.
N1-[3-(4-Methylphenyl)-1,4-diphenyl-1H-pyrazol-5-yl]-1-benzenesulfonamide
Supplementary data
(4b): Yellow solid, mp: 219–221 °C; yield: 0.40 g (87%). IR (KBr) (m
max, cmÀ1):
3738, 3431, 1595, 1507, 1255, 1110. 1H NMR (500 MHz, CDCl3): dH = 2.43
(3H, s, Me), 6.97 (1H, t, 3J = 7.2 Hz, Ar), 7.11–7.18 (5H, m, Ph), 7.25–7.30 (5H, m,
Ph), 7.36 (2H, t, 3J = 7.2 Hz, Ar), 7.48 (2H, t, 3J = 7.3 Hz, Ar), 7.68 (2H, t,
3J = 7.3 Hz, Ar), 7.92 (2H, d, 3J = 8.0 Hz, Ar), 8.73 (1H, s, NH). 13C NMR
(125.7 MHz, CDCl3): dC = 21.3 (Me), 113.4 (C), 120.9 (2 CH), 121.6 (C), 122.0
(CH), 125.4 (2 CH), 126.0 (C), 128.7 (2 CH), 128.8 (CH), 128.9 (2 CH), 129.0 (2
CH), 129.1 (C), 129.2 (2 CH), 129.3 (CH), 129.5 (2 CH), 131.9 (2 CH), 133.3 (C),
138.1 (C), 143.8 (C), 148.9 (C). MS: m/z (%) = 465 (M+, 10), 309 (25), 257 (21),
157 (40), 141 (100), 91 (50), 77 (55). Anal. Calcd for C28H23N3O2S (465.12): C,
72.23; H, 4.98; N, 9.03%. Found: C, 72.53; H, 5.05; N, 9.09%.
Supplementary data associated with this article can be found, in
References and notes
1. Krow, G. R. Angew. Chem., Int. Ed. Engl. 1971, 10, 435.
2. Lu, P.; Wang, Y. G. Synlett 2010, 165.
3. Yoo, E. J.; Chang, S. Curr. Org. Chem. 2009, 13, 1766.
4. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596.