l-Proline-Derived Dendritic Tetrakis(diperoxotungsto)phosphate
ers, Dordrecht, The Netherlands, 2003; c) D. L. Long, E. Burk-
holder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105–121.
a) K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hi-
kichi, N. Mizuno, Science 2003, 300, 964–966; b) M. Bonchio,
M. Carraro, G. Scorrano, U. Kortz, Adv. Synth. Catal. 2005,
347, 1909–1912; c) A. Sartorel, M. Carraro, A. Bagno, G. Scor-
rano, M. Bonchio, Angew. Chem. 2007, 119, 3319; Angew.
Chem. Int. Ed. 2007, 46, 3255–3258; d) A. Sartorel, M. Car-
raro, R. De Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard,
G. Scorrano, M. Bonchio, J. Am. Chem. Soc. 2008, 130, 5006–
5007.
stirred for 30 min. The CH2Cl2 layer was washed with water and
dried with sodium sulfate. The product was obtained by removing
the solvent under vacuum to give a yellow solid in 90% (204 mg)
[3]
1
yield. H NMR (200.16 MHz, CDCl3, TMS): δ = 7.32 (br., 12 H,
Har), 4.32 (br., 6 H, CH2–N), 3.64 (br., 6 H, CH2–N), 3.28 (br., 3
H, CH–N), 2.32 (br., 6 H, CH2), 2.11 (br., 12 H, CH2), 1.82 (br.,
18 H, CH2), 1.31 (br., 24 H, CH2), 0.91 (br., 6 H, CH2), 0.88 (br.,
36 H, CH3) ppm. 13C NMR (50.33 MHz, CDCl3,TMS): δ = 148.9
(Cq, Ar), 131.3 (CH, Ar), 126.7 (Cq, Ar), 126.2 (CH, Ar), 76.9
(Cq–OH), 74.2 (Cq–OH), 74.0 (CH–N), 60.3 (CH2–N), 54.8 (CH2–
N), 45.0 (CH2), 37.7 (d, CH2–CH=CH2), 26.3 (CH2), 23.5 (CH2),
16.6 (CH2), 16.4 (d, CH2), 14.4 (d, CH3), 14.2 (CH3) ppm. 31P
NMR (121.49 MHz, CDCl3): δ = 2.85 (PO4) ppm. FTIR (KBr
[4]
[5]
A. Proust, R. Thouvenot, P. Gouzerh, Chem. Commun. 2008,
16, 1837–1852.
a) D. A. Judd, J. H. Nettles, J. P. Snyder, D. C. Liotta, J. Tang,
J. Ermolieff, R. F. Schinazi, C. L. Hill, J. Am. Chem. Soc. 2001,
123, 886–897; b) S. Shigeta, S. Mori, E. Kodama, J. Kodama,
K. Takahashi, T. Yamase, Antiviral Res. 2003, 58, 265–271; c)
X. Wang, J. Liu, M. T. Pope, Dalton Trans. 2003, 5, 957–960;
d) Y. Tajima, Microbiol. Immunol. 2003, 47, 207–212.
C. Sanchez, G. J. de Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer,
V. Cabuil, Chem. Mater. 2001, 13, 3061–3083.
a) D. A. J. Judd, H. Nettles, N. Nevins, J. P. Snyder, D. C. Li-
otta, J. Tang, J. Ermolieff, R. F. Schinazi, C. L. Hill, J. Am.
Chem. Soc. 2001, 123, 886–897; b) A. Müller, F. Peters, M. T.
Pope, D. Gattesschi, Chem. Rev. 1998, 98, 239–271; c) B.
Hasenknopf, K. Micoine, E. Lacôte, S. Thorimbert, M. Malac-
ria, R. Thouvenot, Eur. J. Inorg. Chem. 2008, 5001–5013, and
references cited thereind) M. Carraro, A. Sartorel, G. Scorrano,
C. Maccato, M. H. Dickman, U. Kortz, M. Bonchio, Angew.
Chem. 2008, 120, 7385; Angew. Chem. Int. Ed. 2008, 47, 7275–
7279; e) C. Boglio, B. Hasenknopf, G. Lenoble, P. Rémy, P.
Gouzerh, S. Thorimbert, E. Lacôte, M. Malacria, R. Thou-
venot, Chem. Eur. J. 2008, 14, 1532–1540.
For review, see: a) A. Berkessel, H. Gröger, Asymmetric Organ-
ocatalysis, Wiley-VCH, Weinheim, Germany, 2005; b) T. Kat-
suki, in: Comprehensive Coordination Chemistry II, vol. 9 (Ed.:
J. McCleverty), Elsevier Science, Oxford, 2003; c) T. Katsuki,
in: Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: I. Ojima),
Wiley-VCH, New York, 2000; d) E. N. Jacobsen, M. H. Wu,
in: Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen,
A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999.
a) M. Inoue, T. Yamase, Bull. Chem. Soc. Jpn. 1995, 68, 3055–
3063; b) F. B. Xin, M. T. Pope, J. Am. Chem. Soc. 1996, 118,
7731–7736; c) M. Inoue, T. Yamase, Bull. Chem. Soc. Jpn. 1996,
69, 2863–2868; d) D. L. Long, P. Kögerler, L. J. Farrugia, L.
Cronin, Chem. Asian J. 2006, 1, 352–357; e) D. L. Long, E.
Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105–121; f)
C. Streb, D. L. Long, L. Cronin, Chem. Commun. 2007, 5, 471–
473; g) U. Kortz, M. G. Savelieff, F. Y. A. Ghali, L. M. Khalil,
S. A. Maalouf, D. I. Sinno, Angew. Chem. 2002, 114, 4246; An-
gew. Chem. Int. Ed. 2002, 41, 4070–4073; h) X. K. Fang, T. M.
Anderson, C. L. Hill, Angew. Chem. 2005, 117, 3606; Angew.
Chem. Int. Ed. 2005, 44, 3540–3544; i) X. K. Fang, T. M. An-
derson, Y. Hou, C. L. Hill, Chem. Commun. 2005, 40, 5044–
5046; j) L. M. Zheng, T. Whitfield, X. Wang, A. J. Jacobson,
Angew. Chem. 2000, 112, 4702; Angew. Chem. Int. Ed. 2000,
39, 4528–4531; k) H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li,
Z. M. Su, L. Xu, Angew. Chem. 2006, 118, 918; Angew. Chem.
Int. Ed. 2006, 45, 904–908.
plates): ν = 2965.7 (s), 1461.8 (m), 1114.7 (m, P–O), 1083.6 (m, P–
˜
O), 954.9 (s, W=O), 839.5 (m, O–O). C75H132N3O30PW4: calcd. C
38.79, H 5.73, P 1.33, W 31.67; found C 39.43, H 6.03, P 1.29, W
32.01. [α]2D0 = –112.4 (c = 10–2 gmL–1, CHCl3).
[6]
[7]
General Procedure for the Catalytic Oxidation Reactions with Den-
dritic POM 7 and for the Catalyst Recovery Experiment: The POM
catalyst and the substrate (250 equiv.) were dissolved in solvent
(1 mL). An aqueous solution of H2O2 (35% in water) was added
to the reaction mixture at the appropriate temperature. The latter
1
was stirred and monitored by H NMR spectroscopy. Upon com-
pletion of the reaction, the organic layer was separated and concen-
trated under vacuum to about 0.2 mL. The catalyst was precipi-
tated by addition of Et2O (5 mL). The solid was filtered, washed
with diethyl ether (3ϫ1 mL), and dried under vacuum to yield the
1
POM catalyst as a white solid, which was analyzed by H and 31P
NMR spectroscopy before its use in a new catalytic experiment.
The diethyl ether solution was evaporated under vacuum, and the
oxidized product was purified by chromatography on a silica gel
column [petroleum ether/diethyl ether (1:9 v/v)]. The enantiomeric
excesses were determined by chiral HPLC using a Chiralcel ASH
column, UV detector (254 nm), and eluting with hexane-2-propa-
nol (1:1) in the case of methyl phenyl sulfide (8) and (9.5:0.5) in
the case of alkenes, at a flow rate of 0.5 mLmin–1. The catalyst was
recovered following the typical procedure and conditions described
above for the first cycle. The organic solvent and the reactants were
adjusted to the amount of the catalyst used.
[8]
[9]
Supporting Information (see footnote on the first page of this arti-
cle): NMR and IR spectra of compounds 4, 5, 6, and 7.
Acknowledgments
S. N. and C. J. thank the Agence National de la Recherche (ANR)
(grant number ANR-06-BLAN-0215), the University of Bordeaux,
the Centre National de la Recherche Scientifique (CNRS), and the
European Cooperation in Science and Technology (COST) (D40
action). We thank Ms Murielle Berlande (ISM) for HPLC experi-
ments.
[1] a) M. T. Pope, A. Müller, Angew. Chem. 1991, 103, 56; Angew.
Chem. Int. Ed. Engl. 1991, 30, 34–48; b) J. T. Rhule, C. L. Hill,
D. A. Rud, R. F. Schinazi, Chem. Rev. 1998, 98, 327–358; c)
D. E. Katsoulis, Chem. Rev. 1998, 98, 359–388; d) M. T. Pope,
A. Müller (Eds.), Polyoxometalate Chemistry: From Topology
via Self-Assembly to Applications, Kluwer Academic, Dord-
recht, 2001.
[2] a) M. T. Pope, A. Müller (Eds.), Polyoxometalates Chemistry:
From Topology via Self-Assembly to Applications, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 2001; b) J. J.
Borra-Almenar, E. Coronado, A. Müller, M. T. Pope (Eds.),
Polyoxometalate Molecular Science, Kluwer Academic Publish-
[10]
a) C. Jahier, M. Cantuel, N. D. McClenaghan, T. Buffeteau, D.
Cavagnat, F. Agbossou, M. Carraro, M. Bonchio, S. Nlate,
Chem. Eur. J. 2009, 15, 8703–8708; b) C. Jahier, M.-F. Coustou,
M. Cantuel, N. D. McClenaghan, T. Buffeteau, D. Cavagnat,
M. Carraro, S. Nlate, Eur. J. Inorg. Chem. 2011, 727–738.
M. Carraro, G. Modugno, A. Sartorel, G. Scorrano, M. Bon-
chio, Eur. J. Inorg. Chem. 2009, 5164–5174.
W. Wan, B. Mao, S. Zhu, X. Jiang, Z. Liu, R. Wang, Eur. J.
Org. Chem. 2009, 3790–3794.
D. C. Duncan, R. C. Chambers, E. Hecht, C. Hill, J. Am.
Chem. Soc. 1995, 117, 681–691.
[11]
[12]
[13]
Eur. J. Inorg. Chem. 2012, 833–840
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
839