Page 7 of 9
Journal of the American Chemical Society
2013, 135 (20), 7442-7445; (c)
Reisman, S. E., Nickel-Catalyzed
Reductive Cross-Coupling Between Vinyl and Benzyl
Electrophiles. J. Am. Chem. Soc. 2014, 136 (41),
14365-14368; (d) Kadunce, N. T.; Reisman, S. E.,
Cherney, A. H.;
Asymmetric
Engle, Keary M., Directed nickel-catalyzed 1,2-
dialkylation of alkenyl carbonyl compounds. Chem.
Sci. 2018, 9 (23), 5278-5283; (i) Derosa, J.;
1
2
3
4
5
6
7
8
Kleinmans, R.; Tran, V. T.; Karunananda, M. K.;
Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M.,
Nickel-Catalyzed 1,2-Diarylation of Simple Alkenyl
Amides. J. Am. Chem. Soc. 2018, 140 (51), 17878-
17883; (j) Zhao, X.; Tu, H.-Y.; Guo, L.; Zhu,
S.; Qing, F.-L.; Chu, L., Intermolecular selective
carboacylation of alkenes via nickel-catalyzed
reductive radical relay. Nat. Commun. 2018, 9 (1),
3488; (k) Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L.,
Selective, Intermolecular Alkylarylation of Alkenes
via Photoredox/Nickel Dual Catalysis. Org. Lett.
2019, 21 (12), 4771-4776; (l) García-Domínguez, A.;
Mondal, R.; Nevado, C., Dual Photoredox/Nickel-
Catalyzed Three-Component Carbofunctionalization of
Alkenes. Angew. Chem. Int. Ed. 2019, 58 (35), 12286-
12290; (m) Shu, W.; Garcia-Dominguez, A.; Quiros,
M. T.; Mondal, R.; Cardenas, D. J.; Nevado, C.,
Ni-Catalyzed Reductive Dicarbofunctionalization of
Nickel-Catalyzed
Asymmetric
Reductive
Cross-
α-
Coupling between Heteroaryl Iodides and
Chloronitriles. J. Am. Chem. Soc. 2015, 137 (33),
10480-10483; (e) Poremba, K. E.; Kadunce, N. T.;
Suzuki, N.; Cherney, A. H.; Reisman, S. E., Nickel-
Catalyzed Asymmetric Reductive Cross-Coupling To
Access 1,1-Diarylalkanes. J. Am. Chem. Soc. 2017,
139 (16), 5684-5687; (f) Suzuki, N.; Hofstra, J.
9
L.;
Poremba, K. E.; Reisman, S. E., Nickel-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Catalyzed Enantioselective Cross-Coupling of N-
Hydroxyphthalimide Esters with Vinyl Bromides. Org.
Lett. 2017, 19, 2150-2153; (g)
Cherney, A. H.; Ordner, C. M.; Reisman, S. E.,
Hofstra, J. L.;
Synthesis of Enantioenriched Allylic Silanes via
Nickel-Catalyzed Reductive Cross-Coupling. J. Am.
Chem. Soc. 2018, 140 (1), 139-142; (h) Woods, B.
P.; Orlandi, M.; Huang, C. Y.; Sigman, M. S.;
Doyle, A. G., Nickel-Catalyzed Enantioselective
Reductive Cross-Coupling of Styrenyl Aziridines. J.
Am. Chem. Soc. 2017, 139 (16), 5688-5691.
7. For selected reviews, see: (a) Tasker, S. Z.;
Standley, E. A.; Jamison, T. F., Recent advances in
homogeneous nickel catalysis. Nature 2014, 509, 299;
(b) Ananikov, V. P., Nickel: The “Spirited Horse”
of Transition Metal Catalysis. ACS Catal. 2015, 5
(3), 1964-1971; (c) Choi, J.; Fu, G. C., Transition
metal–catalyzed alkyl-alkyl bond formation: Another
dimension in cross-coupling chemistry. Science 2017,
356 (6334), eaaf7230.
Nonactivated
Alkenes:
Scope
and
Mechanistic
Insights. J. Am. Chem. Soc. 2019, 141 (35), 13812-
13821.
9. For recent examples on Ni-catalyzed two-component
dicarbofunctionalizations of unactivated alkenes,
see: (a) Kuang, Y.; Wang, X.; Anthony, D.; Diao,
T.,
Ni-catalyzed
two-component
reductive
dicarbofunctionalization of alkenes via radical
cyclization. Chem. Commun. 2018, 54 (20), 2558-2561;
(b) Kadam, A. A.; Metz, T. L.; Qian, Y.; Stanley,
L.
M.,
Ni-Catalyzed
Three-Component
Alkene
Carboacylation Initiated by Amide C–N Bond
Activation. ACS Catal. 2019, 9 (6), 5651-5656; (c)
8. For recent examples on Ni-catalyzed three-
component dicarbofunctionalizations of unactivated
Jin,
Y.;
Wang,
C.,
Ni-catalysed
reductive
arylalkylation of unactivated alkenes. Chem. Sci.
2019, 10 (6), 1780-1785; (d) Zheng, S.; Gutiérrez-
Bonet, Á.; Molander, G. A., Merging Photoredox PCET
alkenes, see: (a)
Dhungana, R. K.; Kc, S.; Thapa, S.; Sears, J. M.;
Giri, R., Ni-Catalyzed Regioselective 1,2-
Shrestha, B.;
Basnet, P.;
with
Ni-Catalyzed
Cross-Coupling:
Cascade
Dicarbofunctionalization of Olefins by Intercepting
Heck Intermediates as Imine-Stabilized Transient
Metallacycles. J. Am. Chem. Soc. 2017, 139 (31),
Amidoarylation of Unactivated Olefins. Chem 2019, 5
(2), 339-352; (e) Law, C.; Meng, Y.; Koo, S. M.;
Morken, J. P., Catalytic Conjunctive Coupling of
Carboxylic Acid Derivatives with 9-BBN-Derived Ate
Complexes. Angew. Chem. Int. Ed. 2019, 58 (20),
6654-6658; (f) Lin, Q.; Diao, T., Mechanism of Ni-
Catalyzed Reductive 1,2-Dicarbofunctionalization of
Alkenes. J. Am. Chem. Soc. 2019, 141 (44), 17937-
17948; (g) Huang, D.; Olivieri, D.; Sun, Y.;
Zhang, P.; Newhouse, T. R., Nickel-Catalyzed
Difunctionalization
Initiated by Unstabilized Enolates. J. Am. Chem.
Soc. 2019, 141 (41), 16249-16254.
10. (a)
Fluorine
10653-10656; (b)
Nevado, C.,
García-Domínguez, A.;
Nickel-Catalyzed
Li, Z.;
Reductive
Dicarbofunctionalization of Alkenes. J. Am. Chem.
Soc. 2017, 139 (20), 6835-6838; (c) Derosa, J.;
Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle,
K.
M.,
Nickel-Catalyzed
of Alkenyl
β,γ-
Carbonyl
Dicarbofunctionalization
Compounds via Conjunctive Cross-Coupling. J. Am.
Chem. Soc. 2017, 139 (31), 10657-10660; (d) Thapa,
S.; Dhungana, R. K.; Magar, R. T.; Shrestha, B.;
Kc, S.; Giri, R., Ni-catalysed regioselective 1,2-
diarylation of unactivated olefins by stabilizing
Heck intermediates as pyridylsilyl-coordinated
transient metallacycles. Chem. Sci. 2018, 9 (4),
904-909; (e) Basnet, P.; Dhungana, R. K.; Thapa,
S.; Shrestha, B.; Kc, S.; Sears, J. M.; Giri, R.,
Ni-Catalyzed Regioselective beta,delta-Diarylation
of Unactivated Olefins in Ketimines via Ligand-
Enabled Contraction of Transient Nickellacycles:
Rapid Access to Remotely Diarylated Ketones. J. Am.
Chem. Soc. 2018, 140 (25), 7782-7786; (f) Basnet,
P.; Kc, S.; Dhungana, R. K.; Shrestha, B.; Boyle,
T. J.; Giri, R., Synergistic Bimetallic Ni/Ag and
Ni/Cu Catalysis for Regioselective gamma,delta-
Diarylation of Alkenyl Ketimines: Addressing beta-H
Elimination by in Situ Generation of Cationic Ni(II)
Catalysts. J. Am. Chem. Soc. 2018, 140 (46), 15586-
of
Unactivated
Alkenes
Müller, K.;
in Pharmaceuticals:
Faeh, C.; Diederich, F.,
Looking Beyond
Intuition. Science 2007, 317 (5846), 1881-1886; (b)
Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur,
V., Fluorine in medicinal chemistry. Chem. Soc. Rev.
2008, 37 (2), 320-330.
11.
Studer, A., A “Renaissance” in Radical
Trifluoromethylation. Angew. Chem. Int. Ed. 2012,
51 (36), 8950-8958.
12. Anka-Lufford, L. L.; Huihui, K. M. M.; Gower,
N. J.; Ackerman, L. K. G.; Weix, D. J., Nickel-
Catalyzed Cross-Electrophile Coupling with Organic
Reductants in Non-Amide Solvents. Chem. Eur. J.
2016, 22 (33), 11564-11567.
13. Other tertiary alkyl iodides led to low yields,
while primary alkyl iodides didn’t react under the
standard conditions.
14. Kleman, P.; González-Liste, P. J.; García-
Garrido, S. E.; Cadierno, V.; Pizzano, A., Highly
Enantioselective Hydrogenation of 1-Alkylvinyl
Benzoates: A Simple, Nonenzymatic Access to Chiral
2-Alkanols. Chem. Eur. J. 2013, 19 (48), 16209-
16212.
15590; (g)
Kc, S.;
Basnet, P.;
Thapa, S.;
Shrestha, B.; Giri, R., Ni-Catalyzed Regioselective
Dicarbofunctionalization of Unactivated Olefins by
Tandem Cyclization/Cross-Coupling and Application
to the Concise Synthesis of Lignan Natural Products.
J. Org. Chem. 2018, 83 (5), 2920-2936; (h) Derosa,
J.; van der Puyl, V. A.; Tran, V. T.; Liu, M.;
vii
ACS Paragon Plus Environment