6.5 (CH3), 20.9 (CH3), 26.7 (CH2), 48.6 (CH), 78.6 (t, 2JCF 23.1
Hz, C), 114.7 (t, JCF 263.6 Hz, CF2), 125.7 (CH), 126.8 (CH),
2JCF 29.2 Hz, CO); m/z (ES+) 346.1628 (MH+. C20H22F2NO2
requires 346.1619). Crystals suitable for X-ray crystallography
were grown on the side of a round bottom flask from the pure
product without using solvent. The molecular structure is shown
in Fig. S8 in the ESI.†
1
127.5 (CH), 127.9 (CH), 128.3 (CH), 128.7 (CH), 138.0 (C),
2
140.9 (C), 163.7 (t, JCF 28.2 Hz, CO); m/z (ES+) 334.1620
(MH+. C19H22F2NO2 requires 334.1619).
The procedure above was repeated using (S)-(1-phenylethyl)
amine (0.77 mL, 5.9 mmol), n-butyllithium (5.4 mL, 1.6 M in
hexane, 8.6 mmol), racemic ethyl 2,2-difluoro-3-hydroxy-3-phe-
nylpentanoate 5 (0.31 g, 1.2 mmol) and THF (28 mL). The
crude product consisted of a 1 : 1 mixture of (S,S)- and (R,S)-dia-
The procedure above was repeated using (S)-(1-phenylethyl)
amine (0.28 mL, 2.25 mmol), n-butyllithium (2.0 mL, 1.6 M in
hexane, 3.2 mmol), (S)-ethyl-2,2-difluoro-2-(1-hydroxy-1,2,3,4-
tetrahydronaphthalen-1-yl)acetate 10 (0.24 g, 0.9 mmol, 88% ee)
and THF (11 mL). The crude product consisted of
a
1
stereomers according to the H NMR spectrum. The diastereo-
10 : 1 mixture of (S,S)- and (R,S)-diastereomers according to the
19F NMR spectrum and the 19F NMR data revealed that the
crystal structure was obtained from the major diastereomer, 2,2-
difluoro-3(S)-(1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-N-
((S)-1-phenyl-ethyl)acetamide.
isomers were separated by silica gel column chromatography
(10% EtOAc in hexane) to give diastereomerically pure 2,2-
difluoro-3(R)-hydroxy-3-phenyl-N-((S)-1-phenylethyl)pentana-
mide as colourless crystals (0.06 g, 15%); mp 131–132 °C. [α]D
3
(CHCl3) −40.7° (c = 1); δH (CDCl3) 0.78 (3H, t, JHH 7.4 Hz,
3
CH2CH3), 1.14 (3H, d, JHH 6.7 Hz, CHCH3), 2.07–2.23 (2H,
Acknowledgements
3
m, CH2CH3), 4.49 (1H, br s, OH), 4.91 (1H, quintet, JHH 7.0
Hz, CHCH3), 6.34 (1H, br s, NH), 7.17–7.21 (2H, m, ArH),
We would like to thank the Royal Society (AMS) for financial
support.
3
7.27–7.42 (6H, m, ArH), 7.49–7.54 (2H, dm, JHH 8.0 Hz,
2
ArH); δF (CDCl3) −116.69 (1F, d, JFF 254.7 Hz, CFAFB),
2
−118.40 (1F, d, JFF 254.7 Hz, CFAFB); δC (CDCl3) 6.6 (CH3),
References
2
20.5 (CH3), 26.6 (CH2), 48.8 (CH), 78.6 (t, JCF 23.1 Hz, C),
1
1 D. O’Hagan, J. Fluorine Chem., 2010, 131, 1071.
114.8 (t, JCF 262.6 Hz, CF2), 126.1 (CH), 126.9 (CH), 127.9
2 (a) D. Cahard, X. Xu, S. Couve-Bonnaire and X. Pannecoucke, Chem.
Soc. Rev., 2010, 39, 558; (b) S. Lectard, Y. Hamashima and M. Sodeoka,
Adv. Synth. Catal., 2010, 352, 2708; (c) Y. K. Kang and D. Y. Kim, Curr.
Org. Chem., 2010, 14, 917; (d) V. A. Bruce and D. O’Hagan, Angew.
Chem., Int. Ed., 2008, 47, 1179; (e) J.-A. Ma and D. Cahard, Chem. Rev.,
2008, 108, PR1–PR43; (f) N. Shibata, S. Mizuta and H. Kawai, Tetrahe-
dron: Asymmetry, 2008, 19, 2633; (g) T. Billard and B. R. Langlois,
Eur. J. Org. Chem., 2007, 891.
(CH), 128.0 (CH), 128.2 (CH), 128.9 (CH), 138.0 (C), 141.1
2
(C), 163.5 (t, JCF 28.2 Hz, CO); m/z (ES+) 334.1621 (MH+.
C19H22F2NO2 requires 334.1619). Crystals suitable for X-ray
crystallography were grown by slow evaporation from a solution
of
2,2-difluoro-3(R)-hydroxy-3-phenyl-N-((S)-1-phenylethyl)-
pentanamide in 10% EtOAc in hexane.
3 (a) P. G. Cozzi, A. Mignogna and L. Zoli, Pure Appl. Chem., 2008, 80,
891; (b) P. G. Cozzi, Angew. Chem., Int. Ed., 2007, 46, 2568;
(c) R. Ocampo and W. R. Dolbier, Jr., Tetrahedron, 2004, 60, 9325;
(d) A. Fürstner, Synthesis, 1989, 571.
Determination of the absolute configuration of the new chiral
centre in ethyl 2,2-difluoro-2-(1-hydroxy-1,2,3,4-
tetrahydronaphthalen-1-yl)acetate
4 (a) R. J. Kloetzing, T. Thaler and P. Knochel, Org. Lett., 2006, 8, 1125;
(b) Y. Fujiwara, T. Katagiri and K. Uneyama, Tetrahedron Lett., 2003, 44,
6161; (c) A. Ojida, T. Yamano, N. Taya and A. Tasaka, Org. Lett., 2002,
4, 3051; (d) J. M. Andrés, Y. Martín, R. Pedrosa and A. Pérez-Encabo,
Tetrahedron, 1997, 53, 3787; (e) A. Mi, Z. Wang, Z. Chen, Y. Jiang,
A. S. C. Chan and T.-K. Yang, Tetrahedron: Asymmetry, 1995, 6, 2641;
(f) D. Pini, A. Mastantuono and P. Salvadori, Tetrahedron: Asymmetry,
1994, 5, 1875; (g) K. Soai, A. Oshio and T. Saito, J. Chem. Soc., Chem.
Commun., 1993, 811; (h) K. Soai and Y. Kawase, Tetrahedron: Asymme-
try, 1991, 2, 781; (i) M. Guetté, J. Capillon and J.-P. Guetté, Tetrahedron,
1973, 29, 3659; ( j) M. Guetté, J.-P. Guetté and J. Capillon, Tetrahedron
Lett., 1971, 12, 2863.
5 (a) K. Sato, A. Tarui, T. Kita, Y. Ishida, H. Tamura, M. Omote, A. Ando
and I. Kumadaki, Tetrahedron Lett., 2004, 45, 5735; (b) K. Kanai,
H. Wakabayashi and T. Honda, Org. Lett., 2000, 2, 2549; (c) T. Honda,
H. Wakabayashi and K. Kanai, Chem. Pharm. Bull., 2002, 50, 307;
(d) J. C. Adrian, Jr. and M. L. Snapper, J. Org. Chem., 2003, 68, 2143.
6 (a) K. Maruoka, N. Hirayama and H. Yamamoto, Polyhedron, 1990, 9,
223; (b) I. Sato, Y. Takizawa and K. Soai, Bull. Chem. Soc. Jpn., 2000,
73, 2825; (c) Y. Ukaji, Y. Yoshida and K. Inomata, Tetrahedron: Asymme-
try, 2000, 11, 733; (d) Y. Ukaji, S. Takenaka, Y. Horita and K. Inomata,
Chem. Lett., 2001, 254.
7 (a) C. Wolf and M. Moskowitz, J. Org. Chem., 2011, 76, 6372;
(b) N. Lin, M.-M. Chen, R.-S. Luo, Y.-Q. Deng and G. Lu, Tetrahedron:
Asymmetry, 2010, 21, 2816; (c) F. Benfatti and P. G. Cozzi, Tetrahedron:
Asymmetry, 2010, 21, 1503; (d) T. Tanaka and M. Hayashi, Chem. Lett.,
2008, 37, 1298; (e) P. G. Cozzi, F. Benfatti, M. G. Capdevila and
A. Mignogna, Chem. Commun., 2008, 3317; (f) P. G. Cozzi,
A. Mignogna and P. Vicennati, Adv. Synth. Catal., 2008, 350, 975; (g) M.
A. Fernández-Ibáñez, B. Maciá, A. J. Minnaard and B. L. Feringa, Org.
Lett., 2008, 10, 4041; (h) M. A. Fernández-Ibáñez, B. Maciá, A.
J. Minnaard and B. L. Feringa, Chem. Commun., 2008, 2571; (i) M.
A. Fernández-Ibáñez, B. Maciá, A. J. Minnaard and B. L. Feringa,
The procedure above was repeated using (S)-(1-phenylethyl)
amine (0.32 mL, 2.5 mmol), n-butyllithium (2.3 mL, 1.6 M in
hexane, 3.7 mmol), racemic ethyl-2,2-difluoro-2-(1-hydroxy-
1,2,3,4-tetrahydronaphthalen-1-yl)acetate 10 (0.14 g, 0.5 mmol)
and THF (12 mL). The crude product consisted of
a
1 : 1 mixture of (S,S)- and (R,S)-diastereomers according to the
1H NMR spectrum. The diastereoisomers were separated by
silica gel column chromatography (10% EtOAc in hexane) to
give diastereomerically pure 2,2-difluoro-3(S)-(1-hydroxy-
1,2,3,4-tetrahydronaphthalen-1-yl)-N-((S)-1-phenylethyl)aceta-
mide as colourless crystals (0.03 g, 17%); mp 153–155 °C; [α]D
(CHCl3) −20.4° (c = 1); anal. calcd for C20H21F2NO2: C 69.55,
H 6.1, N 4.05%; found: C 69.4, H 6.2, N 4.1%. δH (CDCl3) 1.44
3
(3H, d, JHH 7.0 Hz, CH3), 1.66–1.78 (1H, m, CF2COH-
3
CHAHB), 1.88 (2H, d, JHH 11.0 Hz, CH2CH2CH2), 2.24 (1H,
m, CF2COHCHAHB), 2.62–278 (2H, m, ArCH2), 4.05 (1H, br s,
3
OH), 5.04 (1H, quintet, JHH 7.0 Hz, CHCH3), 6.52 (1H, br s,
NH), 7.02–7.06 (2H, m, ArH), 7.12–7.32 (6H, m, ArH), 7.51
3
2
(1H, d, JHH 7.8 Hz, ArH); δF (CDCl3) −112.76 (1F, d, JFF
2
257.4 Hz, CFAFB), −113.65 (1F, d, JFF 257.4 Hz, CFAFB); δC
(CDCl3) 19.0 (CH2), 21.2 (CH3), 29.5 (CH2), 33.2 (CH2), 49.3
(CH), 73.7 (t, JCF 23.1 Hz, C), 115.7 (t, JCF 261.6 Hz, CF2),
126.2 (2 × CH), 127.9 (CH), 128.0 (CH), 128.4 (CH), 128.9
(CH), 129.0 (CH), 134.0 (C), 139.1 (C), 141.4 (C), 163.6 (t,
2
1
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 3332–3342 | 3341