through a few key intermediates such as enolates, and ends
up as carboxylic acid derivatives (Scheme 1a).9 As part of a
larger program to explore and understand the rich chemistry
enabled by NHC catalysis, we wondered whether the “back-
ward” pathways starting from stable carboxylic ester
substrates10 could be realized (Scheme 1a). Our design is
further illustrated in Scheme 1b. A stable ester (I) bearing a
good leaving group (OR0) may react with an NHC to form a
more reactive intermediate (II) with increased acidities of the
R C-H’s. The ester intermediate II subsequently undergoes a
deprotonation to generate enolate III as a key intermediate
that can react with electrophiles. In addition to intrinsic
scientific values provided with asymmetric catalytic activa-
tion of esters, we expect that the use of stable carboxylic
esters as substrates will offer synthetic advantages over the
previously employed ketenes and aldehydes in certain cases.
We started by first identifying suitable phenylacetic esters
(1) that could be activated by NHCs to react with R,β-
unsaturated imine 2a as a model substrate (Table 1). The
results briefed in Table 1 showed that chromatographically
stable esters with good leaving groups (electro-deficient
phenols) could behave as effective substrates (Table 1, entries
5ꢀ6). The use of excess base (200 mol % DIEA) was
Scheme 1. NHC-Mediated Activation of Stable Carboxylate
Esters To Generate Enolate Intermediates: A Working
Hypothesis
necessary to neutralize the acidic phenols released during
the ester activations. No DIEA-catalyzed background reac-
tion in the absence of NHC was observed (entry 7).
(8) For a review, see ref 7n; for selected examples, see: (a) Chow,
K. Y. K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126–8127. (b)
Reynolds, N. T.; de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2004, 126,
9518–9519. (c) Kawanaka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am.
Chem. Soc. 2009, 131, 18028–18029. (d) Reynolds, N. T.; Rovis, T. J.
Am. Chem. Soc. 2005, 127, 16406–16407. (e) He, M.; Uc, G. J.; Bode,
J. W. J. Am. Chem. Soc. 2006, 128, 15088–15089. (f) Alcaide, B.;
Almendros, P.; Cabrero, G.; Ruiz, M. P. Chem. Commun. 2007, 4788–
4790. (g) Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798–
13799. (h) Li, G. Q.; Li, Y.; Dai, L. X.; You, S. L. Org. Lett. 2007, 9,
3519–3521. (i) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129,
13796–13797. (j) Du, D.; Li, L. X.; Wang, Z. W. J. Org. Chem. 2009, 74,
4379–4382. (k) Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu,
I. Org. Lett. 2009, 11, 3934–3937. (l) Li, G. Q.; Dai, L. X.; You, S. L. Org.
Lett. 2009, 11, 1623–1625. (m) Phillips, E. M.; Wadamoto, M.; Roth,
H. S.; Ott, A. W.; Scheidt, K. A. Org. Lett. 2009, 11, 105–108. (n) Wang,
L.; Thai, K.; Gravel, M. Org. Lett. 2009, 11, 891–893. (o) Vora, H. U.;
Rovis, T. J. Am. Chem. Soc. 2010, 132, 2860–2861. (p) Ling, K. B.;
Smith, A. D. Chem. Commun. 2011, 47, 373–375. Also see: (q) He, M.;
Beahm, B. J.; Bode, J. W. Org. Lett. 2008, 10, 3817–3820 and ref 7.
(9) For selective protonations of enal β-carbons leading to NHC-
bounded ester enolates for new CꢀC and carbonꢀheteroatom bond
formations, see: (a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc.
2006, 128, 8418–8420. (b) Burstein, C.; Tschan, S.; Xie, X. L.; Glorius, F.
Synthesis 2006, 2418–2439. (c) Phillips, E. M.; Wadamoto, M.; Chan, A.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 3107–3110.
(d) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 10098–10099. (e) Kaeobamrung, J.;
Kozlowski, M. C.; Bode, J. W. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 20661–20665. (f) Fang, X.; Chen, X.; Chi, Y. R. Org. Lett. 2011, 13,
4708–4711. For relevant mechanistic studies in enal activation, see: (g)
Schrader, W. W.; Handayani, P. P.; Burstein, C.; Glorius, F. Chem.
Commun. 2007, 716–718. (h) Mahatthananchai, J.; Bode, J. W. Chem.
Sci. 2012, 3, 192–197. Enolate intermediates are also involved in other
NHC-mediated enal reactions, such as homoenolate-enolate cascades
and self-redox processes; see ref 7. Also see: (i) Zhao, Y. M.; Tam, Y.;
Wang, Y. J.; Li, Z.; Sun, J. Org. Lett. 2012, 14, 1398–1401. (j) Liu, G.;
Wilkerson, P. D.; Toth, C. A.; Xu, H. Org. Lett. 2012, 14, 858–861.
(10) For NHC-catalyzed transesterifications, see: (a) Grasa, G. A.;
Singh, R.; Nolan, S. P. Synthesis 2004, 971–985. For NHC-catalyzed
carboxyl transfer reactions involving carbonates activations, see: (b)
Thomson, J. E.; Rix, K.; Smith, A. D. Org. Lett. 2006, 8, 3785–3788. (c)
Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131,
14176–14177. (d) Candish, L.; Lupton, D. W. Org. Lett. 2010, 12, 4836–
4839. (e) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4,
3583–3586. (f) Nyce, G. W.; Lamboy, J. A.; Connor, E. F.; Waymouth,
R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587–3590. (g) Sarkar, S. D.;
Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190–1191.
Table 1. Identification of Suitable Ester Substrates and Conditions
entrya
ester (1)
yield (%)b
drc
1
2
3
4
5
6
7f
1a1
1a2
1a3
1a4
1a5
1a6
1a6
<1d
<1d
<1d
∼10e
81
N.D.
N.D.
N.D.
N.D.
10:1
11:1
N.D.
83
<1d
a Reaction condition: 1 (0.15 mmol), 2a (0.10 mmol), solvent (0.5 mL).
b Isolated yield (major diastereomer) based on 2a. c Diastereomeric ratio of
3a, determined via 1H NMR analysis of unpurified reaction mixtures. Rela-
tive configuration of the product was determined via X-ray of 3o (Scheme 3,
see Supporting Information). d No detectable formation of product as
1
indicated via TLC and crude H NMR analysis. e Estimated via crude 1H
NMR analysis. f In the absence of NHC A. N.D. = Not determined.
Org. Lett., Vol. 14, No. 8, 2012
2155