Table 3 Substrate scope of 2-quinolinone synthesisa
2 (a) Y. Kobayashi and T. Harayama, Org. Lett., 2009, 11, 1603 and
references cited therein; (b) Y. Kitahara, M. Shimizu and A. Kubo,
Heterocycles, 1990, 31, 2085 and references cited therein.
3 (a) J. M. Kraus, H. B. Tatipaka, S. A. McGuffin, N. K. Chennamaneni,
M. Karimi, J. Arif, C. L. M. J. Verlinde, F. S. Buckner and M. H. Gelb,
J. Med. Chem., 2010, 53, 3887; (b) I. Garrido-Laguna, F. Janku,
G. S. Falchook, S. Fu, D. S. Hong, A. Naing, J. Aaron, X. Wang,
M. Kies and R. Kurzrock, Clin. Cancer Res., 2010, 16, 4031; (c) P. R.
Angibaud, M. G. Venet, W. Filliers, R. Broeckx, Y. A. Ligny, P. Muller,
V. S. Poncelet and D. W. End, Eur. J. Org. Chem., 2004, 479.
4 (a) M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2008, 130, 14058;
(b) A. C. Tadd, A. Matsuno, M. R. Fielding and M. C. Willis, Org.
Lett., 2009, 11, 583; (c) Z. Liu, C. Shi and Y. Chen, Synlett, 2008, 1734;
(d) G. Battistuzzi, R. Bernini, S. Cacchi, I. De Salve and G. Fabrizi, Adv.
Synth. Catal., 2007, 349, 297; (e) R. Bernini, S. Cacchi, G. Fabrizi and
A. Sferrazza, Heterocycles, 2006, 69, 99; (f) D. V. Kadnikov and R. C.
Larock, J. Org. Chem., 2004, 69, 6772; (g) M. Mori, K. Chiba, N. Ohta
and Y. Ban, Heterocycles, 1979, 13, 329; (h) N. A. Cortese, C. B. Ziegler
Jr., B. J. Hrnjez and R. F. Heck, J. Org. Chem., 1978, 43, 2952.
Yield of
c
Entry Substrate 1
4 (R2)
Conditionsb 2+20 (%) (2 : 20)
1
2
4e (4-OMe)
4h (4-CF3)
A (t1 = 9) traced
A (t1 = 12) 57 (57 : 0)
B (t1 = 3,
67 (67 : 0)
t2 = 48)
3
4i (3-CF3)
4
5
4j (4-CO2Me) A (t1 = 17) 64 (64 : 0)
4a (H)
A (t1 = 15) 69 (41 : 28)
5 Following Yu’s report, we also demonstrated that a variety of
4-aryl-2-quinolinones were synthesized from the corresponding
B (t1 = 3,
60 (60 : 0)
t2 = 26)
6
4h (4-CF3)
3-3-diarylacrylamides through
a Pd-catalyzed intramolecular
B (t1 = 3,
48 (48 : 0)
t2 = 48)
7
8
9
4i (3-CF3)
C–H amidation, see: K. Inamoto, T. Saito, K. Hiroya and
T. Doi, J. Org. Chem., 2010, 75, 3900.
6 For selected recent reviews on transition metal-catalyzed C–H functio-
nalization, see: (a) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem.
Soc. Rev., 2011, 40, 5068; (b) O. Baudoin, Chem. Soc. Rev., 2011,
4j (4-CO2Me) A (t1 = 17) 57 (57 : 0)
B (t1 = 3,
4c (4-F)
56 (40 : 16)
85 (59 : 26)
66 (50 : 16)
t2 = 43)
B (t1 = 3,
t2 = 48)
B (t1 = 3,
t2 = 43)
10
4d (4-Cl)
40, 4902; (c) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem.
¨
Soc. Rev., 2011, 40, 4740; (d) A. E. Wendlandt, A. M. Suess and
S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062; (e) Q. Liu,
H. Zhang and A. Lei, Angew. Chem., Int. Ed., 2011, 50, 10788; (f) E. M.
Beccalli, G. Broggini, A. Fasana and M. Rigamonti, J. Organomet.
Chem., 2011, 696, 277; (g) T. W. Lyons and M. S. Sanford, Chem. Rev.,
2010, 110, 1147; (h) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu,
Angew. Chem., Int. Ed., 2009, 48, 5094.
11
12
13
4k (4-Br)
4a (H)
A (t1 = 13) 62e (62 : 0)
B (t1 = 3,
53e (53 : 0)
t2 = 42)
4h (4-CF3)
14
4d (4-Cl)
A (t1 = 15) 72e (72 : 0)
7 For selected recent examples of Pd-catalyzed aromatic C–H amination,
see: (a) E. J. Yoo, S. Ma, T.-S. Mei, K. S. L. Chan and J.-Q. Yu, J. Am.
Chem. Soc., 2011, 133, 7652; (b) X.-Y. Liu, P. Gao, Y.-W. Shen and
Y.-M. Liang, Org. Lett., 2011, 13, 4196; (c) S. W. Youn, J. H. Bihn and
B. S. Kim, Org. Lett., 2011, 13, 3738; (d) B. Haffemayer, M. Gulias and
M. J. Gaunt, Chem. Sci., 2011, 2, 312; (e) Y. Tan and J. F. Hartwig,
J. Am. Chem. Soc., 2010, 132, 3676; (f) S. Chiba, L. Zhang, S. Sanjaya
and G. Y. Ang, Tetrahedron, 2010, 66, 5692; (g) See also ref. 5.
8 For reviews on oxidative Heck reaction, see: (a) Y. Su and N. Jiao,
Curr. Org. Chem., 2011, 15, 3362; (b) B. Karimi, H. Behzadnia,
D. Elhamifar, P. F. Akhavan, F. K. Esfahani and A. Zamani,
Synthesis, 2010, 1399. For theoretical mechanistic studies of oxi-
dative Heck reaction, see: (c) S. Zhang, L. Shi and Y. Ding, J. Am.
Chem. Soc., 2011, 133, 20218.
a
b
Reactions were carried out on a 0.11 mmol scale. Conditions A:
carried out at 100 1C for t1 h. Conditions B: carried out at 100 1C for t1 h
and then 120 1C for t2 h. Isolated yield. 99% of starting 1a was
recovered. 4-Aryl-6-methoxy-2-quinolinone was exclusively obtained.
c
d
e
successfully underwent reaction, affording different substituted
4-aryl-2-quinolinones generally in good to high yields
(entries 2–14). When cinnamamide 1e was employed, the reaction
sometimes gave a mixture of 2-quinolinones 2 and 20, indicating
that the E-/Z-isomerization could be occurring during the reaction
course (entries 5 and 9–11).
9 For selected recent examples of oxidative Heck reaction using organo-
boron compounds, see: (a) A. Nordqvist, C. Bjorkelid, M. Andaloussi,
¨
A. M. Jansson, S. L. Mowbray, A. Karlen and M. Larhed, J. Org.
´
In conclusion, we have reported a Pd(II)-catalyzed, tandem-type
oxidative Heck reaction/intramolecular C–H amidation sequence,
leading to a conceptually new, efficient method for the construction
of 4-aryl-2-quinolinone scaffolds. Readily available, variously sub-
stituted cinnamamides and arylboronic acids were smoothly reacted
in the presence of the PdCl2/1,10-phen catalyst system along with
the copper/silver reoxidant. Studies to improve the yields as well as
to broaden the substrate scope are currently underway.
Chem., 2011, 76, 8986; (b) Y. Liu, D. Li and C.-M. Park, Angew. Chem.,
Int. Ed., 2011, 50, 7333; (c) E. W. Werner and M. S. Sigman, J. Am.
Chem. Soc., 2010, 132, 13981; (d) Y. Leng, F. Yang, K. Wei and Y. Wu,
Tetrahedron, 2010, 66, 1244; (e) E. W. Ping, K. Venkatasubbaiah, T. F.
Fuller and C. W. Jones, Top. Catal., 2010, 53, 1048; (f) L. R. Odell,
J. Lindh, T. Gustafsson and M. Larhed, Eur. J. Org. Chem., 2010, 2270.
10 For related tandem-type, Pd-catalyzed synthesis of heterocycles
involving C–H functionalization, see: (a) L. Ackermann and
A. Althammer, Angew. Chem., Int. Ed., 2007, 46, 1627;
(b) R. B. Bedford and M. Betham, J. Org. Chem., 2006, 71, 9403.
11 N-Free, demethoxylated cinnamamide is not suitable for the
Pd-catalyzed C–H cyclization. For detailed examination of the effect
of the substituent on the nitrogen atom of cinnamamide 1, see ESIw.
12 Use of a large excess of reoxidants might be inhibiting the undesired
N–O bond cleavage during the process. For selected recent examples of
using N–OR groups as an oxidizing directing group (acting as both a
directing group and an internal oxidant) in transition metal-catalyzed
C–H functionalization processes, see: (a) B. Li, J. Ma, N. Wang, H.
Feng, S. Xu and B. Wang, Org. Lett., 2012, 14, 736; (b) N.
Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem. Soc., 2011,
133, 6449; (c) S. Rakshit, C. Grohmann, T. Basset and F. Glorius,
J. Am. Chem. Soc., 2011, 133, 2350.
This work was partly supported by a Grant-in-Aid for
Young Scientists (B) (No. 23790002) from Japan Society for
the Promotion of Science and a Grant-in-Aid for Scientific
Research on Innovative Areas (No. 2105) from MEXT.
Notes and references
1 For selected recent examples, see: (a) A. K. Gupta, N. Sabarwal,
Y. P. Agrawal, S. Prachand and S. Jain, Eur. J. Med. Chem., 2010,
45, 3472; (b) F. O’Donnell, T. J. P. Smyth, V. N. Ramachandran and
W. F. Smyth, Int. J. Antimicrob. Agents, 2010, 35, 30; (c) B. S.
Jayashree, S. Thomas and Y. Nayak, Med. Chem. Res., 2010, 19, 193.
13 For detailed results of the optimization studies, see ESIw.
c
4334 Chem. Commun., 2012, 48, 4332–4334
This journal is The Royal Society of Chemistry 2012