G. C. Reddy, P. Balasubramanyam, N. Salvanna, B. Das
SHORT COMMUNICATION
Besselievre, S. Piguel, F. Mahuteau-Betzer, D. S. Grierson, Org.
Lett. 2008, 10, 4029; e) J. Koubachi, S. El Kazzouli, S. Berte-
ina-Raboin, K. Mouaddib, G. Guillaumet, Synthesis 2008,
2537; f) C. Verrier, C. Hoarau, F. Marsais, Org. Biomol. Chem.
2009, 7, 647; g) I. V. Seregin, V. Ryabova, V. Gevorgyan, J. Am.
Chem. Soc. 2007, 129, 7742; h) T. Kawano, N. Matsuyama, K.
Hirano, T. Satoh, M. Miura, J. Org. Chem. 2010, 75, 1764; i)
F. Monnier, F. Turtaut, L. Duroure, M. Taillefer, Org. Lett.
2008, 10, 3203.
Experimental Section
General Experimental Procedure for the Alkynylation of 1,3,4-Oxa-
diazoles with 1,1-Dibromo-1-alkenes: A 10-mL round-bottomed
flask was loaded with CuBr (7 mg, 0.05 mmol), LiOtBu (80 mg,
1.0 mmol), 1,1-dibromo-1-alkene (0.60 mmol), and the 1,3,4-oxadi-
azole (0.50 mmol) in PEG-400 (2.0 mL). The reaction mixture was
stirred at 80 °C for 2 h. The progress of the reaction was monitored
by TLC. After the consumption of the starting materials, the reac-
tion mixture was allowed to cool and subsequently extracted with
diethyl ether (4ϫ10 mL). The combined organic extracts were
dried with anhydrous Na2SO4. Concentration of the material in
vacuo followed by flash chromatography on silica gel column af-
forded the 2-alkynyl-1,3,4-oxadiazole in good yield.
[5] a) H.-Q. Do, R. M. K. Khan, O. Daugulis, J. Am. Chem. Soc.
2008, 130, 15185; b) H.-Q. Do, O. Daugulis, J. Am. Chem. Soc.
2008, 130, 1128; c) J. J. Mousseau, J. A. Bull, A. B. Charette,
Angew. Chem. 2010, 122, 1133; Angew. Chem. Int. Ed. 2010,
49, 1115; d) X. Chen, X.-H. Hao, C. E. Goodhue, J.-Q. Yu, J.
Am. Chem. Soc. 2006, 128, 6790.
[6] M. Kitahara, K. Hirano, H. Tsurugi, T. Satoh, M. Miura,
Chem. Eur. J. 2010, 16, 1772.
2-Phenyl-5-(p-tolylethynyl)-1,3,4-oxadiazole (3aa): IR: ν = 2215,
˜
1601, 1533, 1476, 1279 cm–1. 1H NMR (200 MHz, CDCl3): δ =
8.09 (d, 2 H, J = 8.0 Hz), 7.56–7.48 (m, 5 H), 7.22 (d, J = 8.0 Hz,
2 H), 2.41 (s, 3 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 164.9,
150.9, 141.2, 132.8, 132.7, 129.3, 129.0, 127.1, 123.4, 116.8, 97.6,
72.8, 21.8 ppm. MS (ESI): m/z = 283 [M + Na]+. HRMS (ESI):
calcd. for C17H12N2ONa [M + Na]+ 283.0847; found 283.0849.
[7] a) T. Kawano, K. Hirano, T. Satoh, M. Miura, J. Am. Chem.
Soc. 2010, 132, 6900; b) N. Matsuda, K. Hirano, T. Satoh, M.
Miura, Org. Lett. 2011, 13, 2860; c) H. Hachiya, K. Hirano, T.
Satoh, M. Miura, Org. Lett. 2011, 13, 3076.
[8] a) S. G. Newman, V. Aureggi, C. S. Bryan, M. Lautens, Chem.
Commun. 2009, 5236; b) H. Hachiya, K. Hirano, T. Satoh, M.
Miura, Angew. Chem. 2009, 121, 4445; Angew. Chem. Int. Ed.
2009, 48, 4381; c) A. Coste, F. Couty, G. Evano, Org. Lett.
2009, 11, 4454; d) . J. Yuen, Y.-Q. Fang, M. Lautens, Org. Lett.
2006, 8, 653; e) P. B. Berciano, S. Lebriquier, F. Besselievre, S.
Piguel, Org. Lett. 2010, 12, 4038.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, spectral data, and copies of the 1H NMR
and 13C NMR spectra of all compounds.
[9] a) B. Das, G. C. Reddy, P. Balasubramanyam, N. Salvanna,
Synthesis 2011, 816; b) B. Das, N. Salvanna, G. C. Reddy, P.
Balasubramanyam, Tetrahedron Lett. 2011, 52, 6497.
[10] a) T. J. Dickerson, N. N. Reed, K. D. Janda, Chem. Rev. 2002,
102, 3325; b) S. Chandrasekhar, S. S. Narasimhulu, N. R. Sul-
tana, N. R. Reddy, Chem. Commun. 2003, 1716; c) B. Das, P.
Balasubramanyam, G. C. Reddy, N. Salvanna, Helv. Chim.
Acta 2011, 94.
Acknowledgments
The authors thank the Council of Scientific and Industrial Re-
search (CSIR) and the University Grants Commission (UGC),
New Delhi for financial assistance.
[11] a) J. Chen, S. K. Spear, J. G. Huddleston, R. D. Rogers, Green
Chem. 2005, 7, 64; b) R. Kumar, P. Chaudary, S. Nimesh, R.
Chandra, Green Chem. 2006, 8, 356.
[1] a) S. A. F. Rostom, M. A. Shalaby, M. A. El-Demellawy, Eur.
J. Med. Chem. 2003, 38, 959; b) G. S. He, L. S. Tan, Q. Zheng,
P. N. Prasad, Chem. Rev. 2008, 108, 1245; c) K. K. Jha, A. Sa- [12] a) J. Hassan, M. Sevignou, C. Gozzi, E. Schulz, M. Lemaise,
mad, Y. Kumar, M. Shaharyar, R. L. Khosa, J. Jain, V. Kumar,
P. Sing, Eur. J. Med. Chem. 2010, 45, 4963; d) P. Singh, P. K.
Jangra, Der. Chem. Sinica 2010, 1, 118.
Chem. Rev. 2002, 102, 1359; b) S. V. Ley, A. W. Thomas, An-
gew. Chem. 2003, 115, 5558; Angew. Chem. Int. Ed. 2003, 42,
5400; c) L. M. Huffman, S. S. Stahl, J. Am. Chem. Soc. 2008,
130, 9196; d) R. J. Phipps, M. J. Gaunt, Science 2009, 323,
1593; e) T. Kawano, T. Yoshizumi, K. Hirano, T. Satoh, M.
Miura, Org. Lett. 2009, 11, 3072; f) F. Besselievre, S. Piguel,
Angew. Chem. 2009, 121, 9717; Angew. Chem. Int. Ed. 2009,
48, 9553; g) E. R. Strieter, B. Bhayana, S. L. Buchwald, J. Am.
Chem. Soc. 2009, 131, 78.
[2] D. Leung, W. Du, C. Hardouin, H. Cheng, I. Hwang, B. F.
Cravatt, D. L. Boger, Bioorg. Med. Chem. Lett. 2005, 15, 1423.
[3] a) U. Mitschke, P. Bäuerle, J. Mater. Chem. 2000, 10, 1471; b)
E. V. Zarudnitskii, I. I. Pervak, A. S. Merkulov, A. A. Yur-
cenko, A. A. Tolmachev, Tetrahedron 2008, 64, 10431.
[4] Some recent examples: a) S.-D. Yang, C.-L. Sun, Z. Fang, B.-
J. Li, Y.-Z. Li, Z.-J. Shi, Angew. Chem. 2008, 120, 1495; Angew.
Chem. Int. Ed. 2008, 47, 1473; b) T. Kawano, T. Yoshizumi, K.
Hirano, T. Satoh, M. Miura, Org. Lett. 2009, 11, 3072; c) G.
Cusati, L. Djakovitch, Tetrahedron Lett. 2008, 49, 2499; d) F.
[13] a) J. Mao, J. Guo, J. Fang, S.-J. Ji, Tetrahedron 2008, 64, 3905;
b) J. She, Z. Jiang, Y. Wang, Tetrahedron Lett. 2009, 50, 593.
Received: October 21, 2011
Published Online: December 12, 2011
474
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 471–474