Angewandte
Chemie
shuttling between two equivalent recognition sites on the
ends of the rigid axle. Addition of one equivalent of acid to
give [3-HꢀDB24C8]+ arrests the shuttling by biasing the
molecule in favor of a single co-conformer to the point that
the wheel interacts only with one end of the axle. Diproto-
nation produces [3-H2ꢀDB24C8]2+ containing two equivalent
recognition sites and the shuttling is resumed but at a much
lower rate due to an increased barrier to translational motion.
Furthermore, addition of a single equivalent of Li+ to
[3ꢀDB24C8] yields [3-LiꢀDB24C8]+ in which a lithium
cation provides a braking action slowing the rapid shuttling
of the neutral [2]rotaxane to an intermediate rate by
participating in the ferrying of the lithium ion between
recognition sites. Conversion between these four states of this
new [2]rotaxane molecular shuttle is straightforward
(Figure 5). Control over the rates of translational motion
coupled with a rigid and compact design should find
application in condensed-phase materials. This system is
particularly well suited for inclusion into metal–organic
frameworks[23] where the size and rigidity of individual MIM
components and the nature of the translational pathway are
important for unperturbed motion and efficient switching.
Keywords: molecular shuttle · pseudorotaxane · rotaxane ·
supramolecular chemistry
.
[1] a) A. M. Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L.
Mottier, F. Paolucci, S. Roffia, G. W. H. Wurpel, Science 2001,
291, 2124; b) R. A. Bissell, E. Cordova, A. E. Kaifer, J. F.
Stoddart, S. Impellizzeri, S. Silvi, M. Venturi, A. Credi, J. Am.
[3] a) J. O. Jeppesen, S. A. Vignon, J. F. Stoddart, Chem. Eur. J.
[4] a) M. Clemente-Leꢂn, A. Credi, M. V. Martinez-Diaz, C.
Mingotaud, J. F. Stoddart, Adv. Mater. 2006, 18, 1291; b) W. D.
Zhou, J. L. Xu, H. Y. Zheng, X. D. Yin, Z. C. Zuo, H. B. Liu,
[5] a) I. Yoon, O. S. Miljanic, D. Benitez, S. I. Khan, J. F. Stoddart,
Aprahamian, T. Ikeda, S. Saha, B. W. Laursen, S. Y. Kim, S. W.
Hansen, P. C. Stein, A. H. Flood, J. F. Stoddart, J. O. Jeppesen, J.
[7] S. Kiviniemi, M. Nissinen, M. T. Jorma-Jalonen, K. Rissanen, M.
Experimental Section
DB24C8 was purchased from Aldrich Chemicals and used as
received. NMR experiments were recorded on a Bruker Avance
300 and 500 MHz NMR spectrometers. Details of the syntheses and
spectroscopic characterization of all new compounds can be found in
the Supporting Information.
X-ray data: [2-HꢀDB24C8][BF4]: C51H52BN3O8F6, M = 959.77,
ꢀ
colorless prisms (0.18 ꢀ 0.20 ꢀ 0.26 mm), triclinic, P1, a = 11.3489(14),
b = 12.4327(15), c = 17.633(2) ꢁ, a = 76.400(2), b = 79.367(2), g =
88.120(2)8, U = 2376.6(5) ꢁ3, Z = 2, 1calcd = 1.341 gcmÀ3
,
m =
[8] H. Akpinar, A. Balan, D. Baran, E. Unver, L. Toppare, Polymer
2010, 51, 6123.
0.105 mmÀ1
, min/max trans. = 0.8552, l(MoKa) = 0.71073 ꢁ, T=
173.0(2) K, 23201 total reflections (R(int) = 0.0826), R1 = 0.0777,
wR2 = 0.1773 [I > 2sI], R1 = 0.1469, wR2 = 0.2173 [all data],
GoF(F2) = 1.010, data/variables/restraints = 8309/623/0. X-ray data
for [3ꢀDB24C8]·(CHCl3)(CH3COOCH2CH3): C73H67Cl3F4O10N4,
[9] D. Castillo, P. Astudillo, J. Mares, F. J. Gonzꢄlez, A. Vela, J.
[11] The new pseudorotaxane motif is sensitive to the nature of the
electron donating and withdrawing groups on the three aromatic
groups. The difluoro substituted axle reported herein is typical.
Full details of this study will be the subject of a future
publication.
R. A. Gibbs, J. Mol. Catal. A 2006, 245, 8; b) Z. Zhang, L. Yin, Y.
[13] F. S. Mancilha, B. A. Da Silveira Neto, A. S. Lopes, P. F. Moreir-
a, Jr., F. H. Quina, R. S. Goncalves, J. Dupont, Eur. J. Org.
[14] D. A. Tramontozzi, N. D. Suhan, S. H. Eichhorn, S. J. Loeb,
[15] By exploiting this capping method, an assortment of symmetrical
and unsymmetrical [2]rotaxane molecular shuttles with variable
wheel size (24–30 membered rings) are possible. Details of this
study will be the subject of a future publication.
[16] For examples of degenerate molecular shuttles see: a) I. Yoon,
D. Benitez, Y.-L. Zhao, O. S. Miljanic, S.-Y. Kim, E. Tkatchouk,
K. C.-F. Leung, S. I. Khan, W. A. Goddard III, J. F. Stoddart,
131, 2493; c) M. Hmadeh, A. C. Fahrenbach, S. Basu, A.
Trabolsi, D. Benitez, H. Li, A. Albrecht-Gary, M. Elhabiri, J. F.
ꢀ
M = 1342.66, colorless prisms (0.30 ꢀ 0.26 ꢀ 0.20 mm), triclinic, P1,
a = 12.718(2), b = 17.456(2), c = 17.499(2) ꢁ, a = 106.241(2), b =
109.040(2), g = 106.716(2)8, U = 3203.8(7) ꢁ3, Z = 2, 1calcd
=
1.392 gcmÀ3, m = 0.220 mmÀ1, min/max trans. = 0.7905, l(MoKa ) =
0.71073 ꢁ, T= 173.0(2) K, 31108 total reflections (R(int) = 0.0796),
R1 = 0.0915, wR2 = 0.2543 [I > 2sI], R1 = 0.1334, wR2 = 0.2934 [all
data], GoF(F2) = 1.038, data/variables/restraints = 11235/847/12. X-
ray Data for [3-H2ꢀDB24C8][BF4]2: C68H60F12O8N4B2, M = 1310.82,
ꢀ
colorless prisms (0.34 ꢀ 0.24 ꢀ 0.18 mm), triclinic, P1, a = 11.182(2),
b = 16.755(3), c = 17.568(3) ꢁ, a = 86.127(2), b = 77.189(2), g =
74.007(2)8, U = 3085.1(8) ꢁ3, Z = 2, 1calcd = 1.411 gcmÀ3
,
m =
0.116 mmÀ1, min/max trans. = 0.7919, l(MoKa ) = 0.71073 ꢁ, T=
173.0(2) K, 28860 total reflections (R(int) = 0.0657), R1 = 0.0642,
wR2 = 0.1715 [I > 2sI], R1 = 0.0918, wR2 = 0.1906 [all data],
GoF(F2) = 1.066,
data/variables/restraints = 10772/847/0.
The
SHELXTL library of programs[24] was used for X-ray solutions and
figures were drawn with DIAMOND software.[25] CCDC 855552,
855553, and 855554 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Received: December 1, 2011
Published online: January 19, 2012
Angew. Chem. Int. Ed. 2012, 51, 2168 –2172
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2171