5 (a) M. Amatore, T. D. Beeson, S. P. Brown and D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2009, 48, 5121–5124; (b) J. E. Wilson,
A. D. Casarez and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131,
11332–11334.
The preliminary chemistry described herein underlines the sus-
ceptibility of the α-alkylation reaction to subtle changes in the
reaction conditions. Mechanistic studies, the design of improved
photocatalysts and their application to other types of reactions
are currently investigated in our laboratory and will be reported
in due course.
6 (a) D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322, 77–80;
(b) P. Renaud and P. Leong, Science, 2008, 322, 55–56; (c) D. A. Nagib,
M. E. Scott and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131,
10875–10877; (d) H.-W. Shih, W. M. N. Vander, R. L. Grange and
D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 13600–13603.
7 (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007,
107, 2725–2756; (b) M. A. Ischay, M. E. Anzovino, J. Du and
T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 12886–12887; (c) K. Zeitler,
Angew. Chem., Int. Ed., 2009, 48, 9785–9789; (d) T. P. Yoon, M.
A. Ischay and J. Du, Nat. Chem., 2010, 2, 527–532;
(e) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011,
40, 102–113; (f) P. V. Pham, D. A. Nagib and D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2011, 50, 6119–6122.
Acknowledgements
We specially thank UPMC, Cnam and CNRS. MENRT is grate-
fully acknowledged for the graduate fellowship awarded to
K. Fidaly.
8 (a) K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159–244;
(b) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and
Z. A. Von, Coord. Chem. Rev., 1988, 84, 85–277; (c) J. D. Slinker,
A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard
and G. G. Malliaras, J. Am. Chem. Soc., 2004, 126, 2763–2767;
(d) L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti,
Top. Curr. Chem., 2007, 281, 143–203.
9 (a) J. Santamaria, M. T. Kaddachi and C. Ferroud, Tetrahedron Lett.,
1992, 33, 781–784; (b) C. Ferroud, P. Rool and J. Santamaria, Tetrahe-
dron Lett., 1998, 39, 9423–9426; (c) G. Cocquet, P. Rool and C. Ferroud,
J. Chem. Soc., Perkin Trans. 1, 2000, 2277–2281.
10 (a) H. Liu, W. Feng, C. W. Kee, Y. Zhao, D. Leow, Y. Pan and C.-H. Tan,
Green Chem., 2010, 12, 953–956; (b) Y. Pan, C. W. Kee, L. Chen and
C.-H. Tan, Green Chem., 2011, 13, 2682–2685; (c) Y. Pan, S. Wang,
C. W. Kee, E. Dubuisson, Y. Yang, K. P. Loh and C.-H. Tan, Green
Chem., 2011, 13, 3341–3344.
11 D. P. Hari and B. König, Org. Lett., 2011, 13, 3852–3855.
12 M. Neumann, S. Fueldner, B. König and K. Zeitler, Angew. Chem., Int.
Ed., 2011, 50, 951–954.
Notes and references
‡Typical procedure for enantioselective α-alkylation of aldehydes (syn-
thesis of 4a): an overnight oven dried Pyrex glass vial was equipped
with a septum and a dried magnetic stir bar. Rose Bengal (0.0025 mmol,
0.005 equiv, 2.5 mg), the imidazolidinone 1 (0.075 mmol, 0.15 equiv,
24.0 mg), anhydrous LiCl (prior oven dried, 0.050 mmol, 0.10 equiv,
2.1 mg) and diethyl bromomalonate 3a (0.50 mmol, 1.0 equiv, 84 μL)
were added successively. After purging the container with argon for
1 min, anhydrous DMSO (0.5 M, 1 mL) was added followed by hydro-
cinnamaldehyde 2a (1.0 mmol, 2.0 equiv, 132 μL) and 2,6-lutidine
(1.0 mmol, 2.0 equiv, 115 μL). Then the stirred solution was degassed
for 10 min under argon bubbling and the mixture was placed 2 cm from
the 24 W 6500 K 1425 lm fluorescent light source for irradiation until
the complete conversion of the bromide after 2 h (monitored by TLC
and/or GC/MS analysis). Then 10 mL of water was added and the result-
ing solution was extracted with EtOAc (3 × 10 mL). The combined
organic layers were dried over anhydrous MgSO4 and concentrated in
vacuo. The crude product was purified by silica gel chromatography
using cyclohexane–EtOAc (95 : 5) to afford the desired alkylation
product 4a (89% yield, 83% ee) as a colorless oil.
13 (a) F. P. Colonna, G. Distefano, S. Pignataro, G. Pitacco and E. Valentin,
J. Chem. Soc., Faraday Trans. 2, 1975, 71, 1572–1576; (b) K. Mueller,
F. Previdoli and H. Desilvestro, Helv. Chim. Acta, 1981, 64, 2497–2507;
(c) W. W. Schoeller, J. Niemann and P. Rademacher, J. Chem. Soc.,
Perkin Trans. 2, 1988, 369–373.
1 (a) P. I. Dalko and L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138–
5175; (b) P. I. Dalko, Chimia, 2007, 61, 213–218;
(c) D. W. C. MacMillan, Nature, 2008, 455, 304–308; (d) A. Dondoni
and A. Massi, Angew. Chem., Int. Ed., 2008, 47, 4638–4660;
(e) I. McCort-Tranchepain, M. Petit and P. I. Dalko, in Handbook of
Green Chemistry, ed. P. T. Anastas and R. H. Crabtree) Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, 2009, vol. 1, pp. 255–318;
(f) P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 1360–1363;
(g) S. Bertelsen and K. A. Jorgensen, Chem. Soc. Rev., 2009, 38, 2178–
2189; (h) B. List, Asymmetric Organocatalysis in Top. Curr. Chem.,
Springer GmbH, Heidelberg, 2010, pp. 29–75.
2 (a) P Kocovsky and A. V. Malkov, Pure Appl. Chem., 2008, 80, 953–
966; (b) Z. Shao and H. Zhang, Chem. Soc. Rev., 2009, 38, 2745–2755;
(c) C. Zhong and X. Shi, Eur. J. Org. Chem., 2011, 2999–3025.
3 T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton and
D. W. C. MacMillan, Science, 2007, 316, 582–585.
4 (a) J. J. Devery III, J. C. Conrad, D. W. C. MacMillan and R. A. Flowers
II, Angew. Chem., Int. Ed., 2010, 49, 6106–6110; (b) H.-Y. Jang,
J.-B. Hong and D. W. C. MacMillan, J. Am. Chem. Soc., 2007, 129,
7004–7005; (c) T. H. Graham, C. M. Jones, N. T. Jui and
D. W. C. MacMillan, J. Am. Chem. Soc., 2008, 130, 16494–16495;
(d) H. Kim and D. W. C. MacMillan, J. Am. Chem. Soc., 2008, 130,
398–399; (e) J. C. Conrad, J. Kong, B. N. Laforteza and
D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 11640–11641;
(f) K. C. Nicolaou, R. Reingruber, D. Sarlah and S. Brase, J. Am. Chem.
Soc., 2009, 131, 2086–2087; (g) S. Rendler and D. W. C. MacMillan,
J. Am. Chem. Soc., 2010, 132, 5027–5029; (h) A. Mastracchio,
A. A. Warkentin, A. M. Walji and D. W. C. MacMillan, Proc. Natl. Acad.
Sci. U. S. A., 2011, 107, 20648–20651.
14 For the metal complexes potential values, see: (a) C. R. Bock,
J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan
and J. K. Nagle, J. Am. Chem. Soc., 1979, 101, 4815–4824;
(b) M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, Jr.,
G. G. Malliaras and S. Bernhard, Chem. Mater., 2005, 17, 5712–5719;
(c) T. Lazarides, T. McCormick, P. Du, G. Luo, B. Lindley and
R. Eisenberg, J. Am. Chem. Soc., 2009, 131, 9192–9194;
(d) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska and
C. R. J. Stephenson, J. Am. Chem. Soc., 2011, 133, 4160–4163; For the
photosensitizer potential values, see: (e) A. W. H. Mau, O. Johansen and
W. H. F. Sasse, Photochem. Photobiol., 1985, 41, 503–509;
(f) T. Shimidzu, T. Iyoda and Y. Koide, J. Am. Chem. Soc., 1985, 107,
35; (g) G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401; (h) G.
J. Kavarnos, Fundamentals of Photoinduced Electron Transfer, VCH,
1993, pp. 40–45; (i) G. D. Sharma, P. Balraju, M. Kumar and M. S. Roy,
Mater. Sci. Eng., B, 2009, 162, 32–39; ( j) P. Fita, M. Fedoseeva and
E. Vauthey, J. Phys. Chem. A, 2011, 115, 2465–2470.
15 For this reaction, the control of the temperature is essential. Using an
energetic 1600 W xenon lamp (used in the lab for tertiary amine oxi-
dation (see ref. 9)), a notable enhancement of the temperature (ΔT ≈
30 °C) after 30 min of reaction, preferentially led to a dehalogenation
pathway.
16 See the ESI† for further information on the triplet quantum yield.
17 D. Gryko and R. Lipinski, Eur. J. Org. Chem., 2006, 3864–3876.
18 “diffuse sunlight” means the ambient light typically obtained through a
translucent glass window. The reaction was performed three times under
various sunlight expositions, and same results (yield and ee) were
observed.
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 1293–1297 | 1297